ON THE RELATIONSHIP BETWEEN THE MULTIPLICITIES OF EIGENVALUES IN FINITE-AND INFINITE-DIMENSIONAL PROBLEMS ON GRAPHS

被引:0
|
作者
Boyko, O. P. [1 ]
Martynyuk, O. M. [1 ]
Pivovarchik, V. M. [1 ]
机构
[1] Ushynskyi Natl South Ukrainian Pedag Univ, Odessa, Ukraine
关键词
INVERSE SPECTRAL PROBLEM; STAR GRAPH; MATRIX;
D O I
10.1007/s11253-017-1379-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that some results concerning the multiplicities of eigenvalues of the spectral problem that describes small transverse vibrations of a star graph of Stieltjes strings and the multiplicities of the eigenvalues of tree-patterned matrices can be used for the description of possible multiplicities of the normal eigenvalues (bound states) of the Sturm-Liouville operator on a star graph.
引用
收藏
页码:521 / 533
页数:13
相关论文
共 50 条
  • [21] On an infinite-dimensional group over a finite field
    Vershik, AM
    Kerov, SV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1998, 32 (03) : 147 - 152
  • [22] On a infinite-dimensional group over a finite field
    A. M. Vershik
    S. V. Kerov
    Functional Analysis and Its Applications, 1998, 32 : 147 - 152
  • [23] Relation between the mechanics of the finite-dimensional systems with memory and the infinite-dimensional Hamiltonians
    Dinariev, O.Yu.
    Prikladnaya Matematika i Mekhanika, 1999, 63 (02): : 245 - 257
  • [24] Ensemble sampler for infinite-dimensional inverse problems
    Coullon, Jeremie
    Webber, Robert J.
    STATISTICS AND COMPUTING, 2021, 31 (03)
  • [25] On necessary conditions for infinite-dimensional extremum problems
    Franco Giannessi
    Giandomenico Mastroeni
    Amos Uderzo
    Journal of Global Optimization, 2004, 28 : 319 - 337
  • [26] Geometric MCMC for infinite-dimensional inverse problems
    Beskos, Alexandros
    Girolami, Mark
    Lan, Shiwei
    Farrell, Patrick E.
    Stuart, Andrew M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 327 - 351
  • [27] Lagrange multipliers and infinite-dimensional equilibrium problems
    Daniele, Patrizia
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (1-3) : 65 - 70
  • [28] A PONTRYAGIN MAXIMUM PRINCIPLE FOR INFINITE-DIMENSIONAL PROBLEMS
    Krastanov, M. I.
    Ribarska, N. K.
    Tsachev, Ts. Y.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (05) : 2155 - 2182
  • [29] Ensemble sampler for infinite-dimensional inverse problems
    Jeremie Coullon
    Robert J. Webber
    Statistics and Computing, 2021, 31
  • [30] Infinite-dimensional groups applications to industrial problems
    Khots, BS
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 697 - 705