VISCOSITY EXTRAGRADIENT METHOD WITH ARMIJO LINESEARCH RULE FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEM IN HILBERT SPACES

被引:2
|
作者
Li, Gaobo [1 ]
Lu, Yanxia [2 ]
Cho, Yeol Je [3 ,4 ]
机构
[1] Shan Dong Womens Univ, Sch Educ, Jinan 056210, Peoples R China
[2] North China Elect Power Univ, Dept Math & Phys, Baoding 071003, Peoples R China
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
来源
关键词
Nonexpansive mappings; equilibrium problems; Hilbert spaces; ALGORITHMS;
D O I
10.1007/s13226-019-0363-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a viscosity extragradient method with Armijo linesearch rule to find a common element of solution set of a pseudomonotone equilibrium problem and fixed point set of a nonexpansive nonself-mapping in Hilbert space. The strong convergence of the algorithm is proved. As the application, a common fixed point theorem for two nonexpansive nonself-mappings is proved. Finally, some numerical examples are given to illustrate the effectiveness of the algorithm. Our result improves the ones of others in the literature.
引用
收藏
页码:903 / 921
页数:19
相关论文
共 50 条
  • [31] A BREGMAN HYBRID EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE EQUILIBRIUM AND FIXED POINT PROBLEMS
    Jantakarn, Kittisak
    Kaewcharoen, Anchalee
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [32] A BREGMAN HYBRID EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE EQUILIBRIUM AND FIXED POINT PROBLEMS
    Jantakarn, Kittisak
    Kaewcharoen, Anchalee
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [33] An extragradient algorithm for fixed point problems and pseudomonotone equilibrium problems
    Yao, Zhangsong
    Liou, Yeong-Cheng
    Zhu, Li-Jun
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (04): : 89 - 96
  • [34] On Solving the Equilibrium Problem and Fixed Point Problem for Nonspreading Mappings and Lipschitzian Mappings in Hilbert Spaces
    Suwannaut, Sarawut
    THAI JOURNAL OF MATHEMATICS, 2019, 17 : 103 - 127
  • [35] The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in hilbert spaces
    Farid, Mohammad
    Journal of Applied and Numerical Optimization, 2019, 1 (03): : 335 - 345
  • [36] AN EXTRAGRADIENT ALGORITHM FOR FIXED POINT PROBLEMS AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Yao, Zhangsong
    Liou, Yeong-Cheng
    Zhu, Li-Jun
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (04): : 89 - 96
  • [37] An extragradient algorithm for solving equilibrium problem and zero point problem in Hadamard spaces
    R. Moharami
    G. Zamani Eskandani
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [38] Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces
    Jolaoso, Lateef Olakunle
    Okeke, Christian Chibueze
    Shehu, Yekini
    NETWORKS & SPATIAL ECONOMICS, 2021, 21 (04): : 873 - 903
  • [39] Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space
    Jolaoso, L. O.
    Alakoya, T. O.
    Taiwo, A.
    Mewomo, O. T.
    OPTIMIZATION, 2021, 70 (02) : 387 - 412
  • [40] Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces
    Lateef Olakunle Jolaoso
    Christian Chibueze Okeke
    Yekini Shehu
    Networks and Spatial Economics, 2021, 21 : 873 - 903