Certain k-fractional calculus operators and image formulas of k-Struve function

被引:7
|
作者
Suthar, D. L. [1 ]
Baleanu, D. [2 ,3 ]
Purohit, S. D. [4 ]
Ucar, F. [5 ]
机构
[1] Wollo Univ, Dept Math, POB 1145, Dessie, Ethiopia
[2] Cankaya Univ, Dept Math, Ankara, Turkey
[3] Inst Space Sci, Magurele, Romania
[4] Rajasthan Tech Univ, Dept HEAS Math, Kota 324010, India
[5] Marmara Univ, Dept Math, TR-34722 Istanbul, Turkey
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 03期
关键词
extended Bessel-Maitland function; extended beta function; integral transform; Riemann-Liouville fractional calculus operators; GAMMA-FUNCTION;
D O I
10.3934/math.2020115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the Saigo's k-fractional order integral and derivative operators involving k-hypergeometric function in the kernel are applied to the k-Struve function; outcome are expressed in the term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Struve functions are considered.
引用
收藏
页码:1706 / 1719
页数:14
相关论文
共 50 条
  • [21] Fractional calculus and application of generalized Struve function
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    Al Qurashi, Maysaa' Mohamed
    SPRINGERPLUS, 2016, 5
  • [22] Some inequalities of the Gruss type for conformable k-fractional integral operators
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Ghaffar, Abdul
    Qi, Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [23] Some Inequalities of Cebysev Type for Conformable k-Fractional Integral Operators
    Qi, Feng
    Rahman, Gauhar
    Hussain, Sardar Muhammad
    Du, Wei-Shih
    Nisar, Kottakkaran Sooppy
    SYMMETRY-BASEL, 2018, 10 (11):
  • [24] On Some Formulas for the k-Analogue of Appell Functions and Generating Relations via k-Fractional Derivative
    Yilmaz, Ovgu Gurel
    Aktas, Rabia
    Tasdelen, Fatma
    FRACTAL AND FRACTIONAL, 2020, 4 (04) : 1 - 20
  • [25] k-FRACTIONAL INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA CAPUTO k-FRACTIONAL DERIVATIVES
    Waheed, Asif
    Farid, Ghulam
    Rehman, Atiq Ur
    Ayub, Waqas
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 10 (01): : 55 - 67
  • [26] (k, s)-fractional integral operators in multiplicative calculus
    Zhang, Xiaohua
    Peng, Yu
    Du, Tingsong
    CHAOS SOLITONS & FRACTALS, 2025, 195
  • [27] On some Hermite-Hadamard inequalities involving k-fractional operators
    Wu, Shanhe
    Iqbal, Sajid
    Aamir, Muhammad
    Samraiz, Muhammad
    Younus, Awais
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [28] On generalized k-fractional derivative operator
    Rahman, Gauhar
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    AIMS MATHEMATICS, 2020, 5 (03): : 1936 - 1945
  • [29] THE (k, s)-FRACTIONAL CALCULUS OF CLASS OF A FUNCTION
    Rahman, G.
    Ghaffar, A.
    Nisar, K. S.
    Azeema
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (01): : 125 - 138
  • [30] Hermite-Hadamard type inequalities for the generalized k-fractional integral operators
    Set, Erhan
    Choi, Junesang
    Gozpinar, Abdurrahman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,