Sequential change point detection in linear quantile regression models

被引:19
|
作者
Zhou, Mi [1 ]
Wang, Huixia Judy [2 ]
Tang, Yanlin [3 ]
机构
[1] Fannie Mae, Washington, DC 20016 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
美国国家科学基金会;
关键词
Change point detection; Linear regression; Quantile regression; Sequential testing; Structural change; STRUCTURAL-CHANGE; PARAMETER;
D O I
10.1016/j.spl.2015.01.031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a method for sequential detection of structural changes in linear quantile regression models. We establish the asymptotic properties of the proposed test statistic, and demonstrate the advantages of the proposed method over existing tests through simulation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 103
页数:6
相关论文
共 50 条
  • [21] Change-point detection in a linear model by adaptive fused quantile method
    Ciuperca, Gabriela
    Maciak, Matus
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (02) : 425 - 463
  • [22] Sequential change-point detection in Poisson autoregressive models
    Kengne, William
    [J]. JOURNAL OF THE SFDS, 2015, 156 (04): : 98 - 112
  • [23] Sequential change point detection in ARMA-GARCH models
    Song, Junmo
    Kang, Jiwon
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (08) : 1520 - 1538
  • [24] QUANTILE REGRESSION AS A STARTING POINT IN PREDICTIVE RISK MODELS
    Pitarque, Albert
    Maria Perez-Marin, Ana
    Guillen, Montserrat
    [J]. ANALES DEL INSTITUTO DE ACTUARIOS ESPANOLES, 2019, (25): : 101 - 117
  • [25] Estimation for the censored partially linear quantile regression models
    Du, Jiang
    Zhang, Zhongzhan
    Xu, Dengke
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2393 - 2408
  • [26] Quantile regression estimation of partially linear additive models
    Hoshino, Tadao
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (03) : 509 - 536
  • [27] Bayesian quantile regression for partially linear additive models
    Hu, Yuao
    Zhao, Kaifeng
    Lian, Heng
    [J]. STATISTICS AND COMPUTING, 2015, 25 (03) : 651 - 668
  • [28] QUANTILE REGRESSION IN PARTIALLY LINEAR VARYING COEFFICIENT MODELS
    Wang, Huixia Judy
    Zhu, Zhongyi
    Zhou, Jianhui
    [J]. ANNALS OF STATISTICS, 2009, 37 (6B): : 3841 - 3866
  • [29] Linear quantile regression models for longitudinal experiments: An overview
    Marino M.F.
    Farcomeni A.
    [J]. METRON, 2015, 73 (2) : 229 - 247
  • [30] Bayesian quantile regression for partially linear additive models
    Yuao Hu
    Kaifeng Zhao
    Heng Lian
    [J]. Statistics and Computing, 2015, 25 : 651 - 668