Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment

被引:53
|
作者
Sun, Yuqing [1 ,2 ]
Lei, Cheng [1 ,3 ]
Khan, Eakalak [4 ]
Chen, Season S. [1 ]
Tsang, Daniel C. W. [1 ]
Ok, Yong Sik [5 ]
Lin, Daohui [3 ]
Feng, Yujie [2 ]
Li, Xiang-dong [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[2] Harbin Inst Technol, State Key Lab UrbanWater Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
[3] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[4] North Dakota State Univ, Dept Civil & Environm Engn, Dept 2470,POB 6050, Fargo, ND 58108 USA
[5] Korea Univ, Div Environm Sci & Ecol Engn, OJERI, Seoul 02841, South Korea
基金
中国国家自然科学基金;
关键词
Nanoscale zero-valent iron; Alginate entrapment; Hydraulic fracturing; Aging effect; Chemical speciation; Metal/metalloid removal; SHALE GAS DEVELOPMENT; FLOWBACK WATER; ENZYME-ACTIVITIES; ALGINATE BEADS; NANOPARTICLES; ADSORPTION; REDUCTION; EVOLUTION; KINETICS; IMPACT;
D O I
10.1016/j.scitotenv.2017.09.332
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, alginate and polyvinyl alcohol (PVA)-alginate entrapped nanoscale zero-valent iron (nZVI) was tested for structural evolution, chemical transformation, and metals/metalloids removal (Cu(II), Cr(VI), Zn(II), and As(V)) after 1-2 month passivation in model saline wastewaters from hydraulic fracturing. X-ray diffraction analysis confirmed successful prevention of Fe-0 corrosion by polymeric entrapment. Increasing ionic strength (I) from 0 to 4.10 M (deionized water to Day-90 fracturing wastewater (FWW)) with prolonged aging time induced chemical instability of alginate due to dissociation of carboxyl groups and competition for hydrogen bonding with nZVI, which caused high Na (7.17%) and total organic carbon (24.6%) dissolution from PVA-alginate entrapped nZVI after 2-month immersion in Day-90 FWW. Compared to freshly-made beads, 2-month aging of PVA-alginate entrapped nZVI in Day-90 FWW promoted Cu(II) and Cr(VI) uptake in terms of the highest removal efficiency (84.2% and 70.8%), pseudo-second-order surface area-normalized rate coefficient k(sa) (2.09 x 10(-1) L m(-2) h(-1) and 1.84 x 10(-1) L m(-2) h(-1)), and Fe dissolution after 8-h reaction (13.9% and 8.45%). However, the same conditions inhibited Zn(II) and As(V) sequestration in terms of the lowest removal efficiency (31.2% and 39.8%) by PVA-alginate nZVI and ksa (4.74 x 10(-2) Lm(-2) h(-1) and 6.15 x 10(-2) Lm(-2) h(-1)) by alginate nZVI. The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in metals/metalloids removal by entrapped nZVI after aging was attributed to distinctive removal mechanisms: (i) enhanced Cu(II) and Cr(VI) removal by nZVI reduction with accelerated electron transfer after pronounced dissolution of non-conductive polymeric immobilization matrix; (ii) suppressed Zn(II) and As(V) removal by nZVI adsorption due to restrained mass transfer after blockage of surface-active micropores. Entrapped nZVI was chemically fragile and should be properly stored and regularly replaced for good performance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:498 / 507
页数:10
相关论文
共 50 条
  • [41] Removal of lead and chromium ions in water by nanoscale zero-valent iron
    Zhang S.-Q.
    Cen J.
    Lyu D.-Y.
    Yao N.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (03): : 524 - 532
  • [42] Removal of organic compounds by nanoscale zero-valent iron and its composites
    Li, Qian
    Chen, Zhongshan
    Wang, Huihui
    Yang, Hui
    Wen, Tao
    Wang, Shuqin
    Hu, Baowei
    Wang, Xiangke
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 792
  • [43] Removal of cadmium in aqueous solution by sulfidated nanoscale Zero-Valent Iron
    Yang W.
    Qin R.
    Qin R.
    Zhang L.
    Qiu M.
    Nature Environment and Pollution Technology, 2020, 19 (02) : 755 - 760
  • [44] Removal of arsenic(III) from groundwater by nanoscale zero-valent iron
    Kanel, SR
    Manning, B
    Charlet, L
    Choi, H
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (05) : 1291 - 1298
  • [45] Chromium removal using resin supported nanoscale zero-valent iron
    Fu, Fenglian
    Ma, Jun
    Xie, Liping
    Tang, Bing
    Han, Weijiang
    Lin, Suya
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2013, 128 : 822 - 827
  • [46] Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron
    Li, Meirong
    Tang, Chenliu
    Zhang, Weixian
    Ling, Lan
    PROGRESS IN CHEMISTRY, 2022, 34 (04) : 846 - 856
  • [47] Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron
    Shi, Li-na
    Zhang, Xin
    Chen, Zu-liang
    WATER RESEARCH, 2011, 45 (02) : 886 - 892
  • [48] Removal of Cr(VI) from wastewater by supported nanoscale zero-valent iron on granular activated carbon
    Fu, Fenglian
    Han, Weijiang
    Huang, Chijun
    Tang, Bing
    Hu, Min
    DESALINATION AND WATER TREATMENT, 2013, 51 (13-15) : 2680 - 2686
  • [49] Erratum to: Nanoscale zero-valent iron flakes for groundwater treatment
    R. Köber
    H. Hollert
    G. Hornbruch
    M. Jekel
    A. Kamptner
    N. Klaas
    H. Maes
    K.-M. Mangold
    E. Martac
    A. Matheis
    H. Paar
    A. Schäffer
    H. Schell
    A. Schiwy
    K. R. Schmidt
    T. J. Strutz
    S. Thümmler
    A. Tiehm
    J. Braun
    Environmental Earth Sciences, 2016, 75
  • [50] Uranium Removal from Groundwater and Wastewater Using Clay-Supported Nanoscale Zero-Valent Iron
    Kornilovych, Borys
    Kovalchuk, Iryna
    Tobilko, Viktoriia
    Ubaldini, Stefano
    METALS, 2020, 10 (11) : 1 - 12