Gradient-based estimation of uncertain parameters for elliptic partial differential equations

被引:11
|
作者
Borggaard, Jeff [1 ]
van Wyk, Hans-Werner [2 ]
机构
[1] Virginia Tech, Interdisciplinary Ctr Appl Math, Blacksburg, VA 24061 USA
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
关键词
parameter estimation; inverse problems in elliptic equations; uncertainty quantification; augmented Lagrangian method; AUGMENTED LAGRANGIAN METHOD; STOCHASTIC COLLOCATION METHOD; INVERSE PROBLEMS; IDENTIFIABILITY; APPROXIMATION; COEFFICIENTS; INTEGRATION;
D O I
10.1088/0266-5611/31/6/065008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the estimation of uncertain distributed diffusion coefficients in elliptic systems based on noisy measurements of the model output. We treat the parameter identification problem as a variational problem over the appropriate stochastic Sobolev spaces and show that minimizers exist and satisfy a saddle point condition. Although a lack of regularity precludes the direct use of gradient-based optimization techniques, a spectral approximation of the observation field allows us to estimate the original problem by a smooth, albeit high dimensional, deterministic optimization problem, the so-called finite noise problem, which lends itself readily to more traditional optimization approaches. We prove that the finite noise minimizers converge to the appropriate infinite dimensional ones, and devise and analyze a stochastic augmented Lagrangian method for locating these numerically. We also discuss the numerical discretization of the finite noise problem, using sparse grid hierarchical finite elements, and present three numerical examples to illustrate our method.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Differential evolution based computation intelligence solver for elliptic partial differential equations
    Muhammad Faisal Fateh
    Aneela Zameer
    Sikander M. Mirza
    Nasir M. Mirza
    Muhammad Saeed Aslam
    Muhammad Asif Zahoor Raja
    Frontiers of Information Technology & Electronic Engineering, 2019, 20 : 1445 - 1456
  • [22] Differential evolution based computation intelligence solver for elliptic partial differential equations
    Fateh, Muhammad Faisal
    Zameer, Aneela
    Mirza, Sikander M.
    Mirza, Nasir M.
    Aslam, Muhammad Saeed
    Raja, Muhammad Asif Zahoor
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2019, 20 (10) : 1445 - 1456
  • [23] Nonparametric estimation for uncertain differential equations
    He, Liu
    Zhu, Yuanguo
    Gu, Yajing
    FUZZY OPTIMIZATION AND DECISION MAKING, 2023, 22 (04) : 697 - 715
  • [24] Nonparametric estimation for uncertain differential equations
    Liu He
    Yuanguo Zhu
    Yajing Gu
    Fuzzy Optimization and Decision Making, 2023, 22 : 697 - 715
  • [25] Parameter estimation in uncertain differential equations
    Yao, Kai
    Liu, Baoding
    FUZZY OPTIMIZATION AND DECISION MAKING, 2020, 19 (01) : 1 - 12
  • [26] Parameter estimation in uncertain differential equations
    Kai Yao
    Baoding Liu
    Fuzzy Optimization and Decision Making, 2020, 19 : 1 - 12
  • [27] Moment estimation in uncertain differential equations based on the Milstein scheme
    Tang, Han
    Yang, Xiangfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 418
  • [28] Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters
    Khelifa, Mohammed Amin
    Lekouaghet, Badis
    Boukabou, Abdelkrim
    OPTIK, 2022, 259
  • [29] ESTIMATION OF PARAMETERS IN PARTIAL DIFFERENTIAL EQUATIONS FROM NOISY EXPERIMENTAL DATA
    SEINFELD, JH
    CHEN, WH
    CHEMICAL ENGINEERING SCIENCE, 1971, 26 (06) : 753 - &
  • [30] BINARY, LINEAR, ELLIPTIC, PARTIAL DIFFERENTIAL EQUATIONS
    HARTMAN, P
    WINTNER, A
    DUKE MATHEMATICAL JOURNAL, 1955, 22 (04) : 515 - 524