Stabilization of dominant structures in an ionic reaction-diffusion system

被引:1
|
作者
Kramer, R [1 ]
Munster, AF [1 ]
机构
[1] Univ Wurzburg, Inst Chem Phys, D-97074 Wurzburg, Germany
关键词
control of chaos; orthogonal decomposition; spatiotemporal patterns;
D O I
10.1135/cccc19980761
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe a method of stabilizing the dominant structure in a chaotic reaction-diffusion system, where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by the Karhunen-Loeve decomposition, also known as orthogonal decomposition. Using a ionic version of the Brusselator model in a spatially one-dimensional system, our control strategy is based on perturbations derived from the amplitude function of the dominant spatial mode. The perturbation is used in two different ways: A global perturbation is realized by forcing an electric current through the one-dimensional system, whereas the local perturbation is performed by modulating concentrations of the autocatalyst at the boundaries. Only the global method enhances the contribution of the dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple bulk oscillation of the entire system.
引用
收藏
页码:761 / 769
页数:9
相关论文
共 50 条
  • [41] SUSTAINED REACTION-DIFFUSION STRUCTURES IN AN OPEN REACTOR
    OUYANG, Q
    BOISSONADE, J
    ROUX, JC
    DEKEPPER, P
    PHYSICS LETTERS A, 1989, 134 (05) : 282 - 286
  • [42] Oscillating localized structures in reaction-diffusion systems
    Descalzi, O
    Hayase, Y
    Brand, HR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (12): : 4097 - 4104
  • [43] DYNAMICS OF DISSIPATIVE STRUCTURES IN REACTION-DIFFUSION EQUATIONS
    PANFILOV, AV
    KEENER, JP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) : 205 - 219
  • [44] COEXISTENCE STATE OF A REACTION-DIFFUSION SYSTEM
    Meng, Yijie
    Wang, Yifu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [45] Pacemakers in a Reaction-Diffusion Mechanics System
    R. H. Keldermann
    M. P. Nash
    A. V. Panfilov
    Journal of Statistical Physics, 2007, 128 : 375 - 392
  • [46] Sierpinski gasket in a reaction-diffusion system
    Hayase, Y
    Ohta, T
    PHYSICAL REVIEW LETTERS, 1998, 81 (08) : 1726 - 1729
  • [48] Geographic tongue as a reaction-diffusion system
    McGuire, Margaret K.
    Fuller, Chase A.
    Lindner, John F.
    Manz, Niklas
    CHAOS, 2021, 31 (03)
  • [49] On the dynamics of a discrete reaction-diffusion system
    Azmy, Y.Y.
    Protopopescu, V.
    Numerical Methods for Partial Differential Equations, 1991, 7 (04) : 385 - 405
  • [50] Spiral instabilities in a reaction-diffusion system
    Zhou, LQ
    Ouyang, Q
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (01): : 112 - 118