Stabilization of dominant structures in an ionic reaction-diffusion system

被引:1
|
作者
Kramer, R [1 ]
Munster, AF [1 ]
机构
[1] Univ Wurzburg, Inst Chem Phys, D-97074 Wurzburg, Germany
关键词
control of chaos; orthogonal decomposition; spatiotemporal patterns;
D O I
10.1135/cccc19980761
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe a method of stabilizing the dominant structure in a chaotic reaction-diffusion system, where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by the Karhunen-Loeve decomposition, also known as orthogonal decomposition. Using a ionic version of the Brusselator model in a spatially one-dimensional system, our control strategy is based on perturbations derived from the amplitude function of the dominant spatial mode. The perturbation is used in two different ways: A global perturbation is realized by forcing an electric current through the one-dimensional system, whereas the local perturbation is performed by modulating concentrations of the autocatalyst at the boundaries. Only the global method enhances the contribution of the dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple bulk oscillation of the entire system.
引用
收藏
页码:761 / 769
页数:9
相关论文
共 50 条
  • [1] DISSIPATIVE STRUCTURES IN A REACTION-DIFFUSION SYSTEM
    KIM, SH
    YEO, SC
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1990, 7 (03) : 188 - 197
  • [2] Feedback Stabilization for a Reaction-Diffusion System with Nonlocal Reaction Term
    Anita, Sebastian
    Arnautu, Viorel
    Dodea, Smaranda
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (04) : 351 - 369
  • [3] STABILIZATION OF A REACTION-DIFFUSION SYSTEM MODELLING MALARIA TRANSMISSION
    Anita, Sebastian
    Capasso, Vincenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06): : 1673 - 1684
  • [4] Stabilization of fronts in a reaction-diffusion system: Application of the Gershgorin theorem
    Smagina, Y
    Nekhamkina, O
    Sheintuch, M
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (08) : 2023 - 2032
  • [5] Boundary stabilization of a reaction-diffusion system weakly coupled at the boundary
    Ghattassi, Mohamed
    Laleg, Taous Meriem
    IFAC PAPERSONLINE, 2020, 53 (02): : 16537 - 16542
  • [6] Superlattice turing structures in a photosensitive reaction-diffusion system
    Berenstein, I
    Yang, L
    Dolnik, M
    Zhabotinsky, AM
    Epstein, IR
    PHYSICAL REVIEW LETTERS, 2003, 91 (05)
  • [7] Superlattice turing structures in a photosensitive reaction-diffusion system
    Berenstein, Igal
    Yang, Lingfa
    Dolnik, Milos
    Zhabotinsky, Anatol M.
    Epstein, Irving R.
    2003, American Physical Society (91)
  • [8] Stationary structures in a discrete bistable reaction-diffusion system
    Munuzuri, AP
    Chua, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2807 - 2825
  • [9] DISSIPATIVE STRUCTURES IN A SOLUBLE NONLINEAR REACTION-DIFFUSION SYSTEM
    LEFEVER, R
    HERSCHKOWITZKAUFMAN, M
    TURNER, JW
    PHYSICS LETTERS A, 1977, 60 (05) : 389 - 391
  • [10] PATTERN-FORMATION IN A BISTABLE IONIC REACTION-DIFFUSION SYSTEM
    MALCHOW, H
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1985, 10 (01) : 15 - 28