Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers

被引:179
|
作者
Binder, Alexander [1 ]
Montavon, Gregoire [2 ]
Lapuschkin, Sebastian [3 ]
Mueller, Klaus-Robert [2 ,4 ]
Samek, Wojciech [3 ]
机构
[1] Singapore Univ Technol & Design, ISTD Pillar, Singapore, Singapore
[2] Tech Univ Berlin, Machine Learning Grp, Berlin, Germany
[3] Fraunhofer Heinrich Hertz Inst, Machine Learning Grp, Berlin, Germany
[4] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
关键词
Neural networks; Image classification; Interpretability;
D O I
10.1007/978-3-319-44781-0_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Layer-wise relevance propagation is a framework which allows to decompose the prediction of a deep neural network computed over a sample, e.g. an image, down to relevance scores for the single input dimensions of the sample such as subpixels of an image. While this approach can be applied directly to generalized linear mappings, product type non-linearities are not covered. This paper proposes an approach to extend layer-wise relevance propagation to neural networks with local renormalization layers, which is a very common product-type non-linearity in convolutional neural networks. We evaluate the proposed method for local renormalization layers on the CIFAR-10, Imagenet and MIT Places datasets.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
  • [41] Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition
    Liebenuein, Lucas
    Maalouf, Alaa
    Gal, Oren
    Feldman, Dan
    Rus, Daniela
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [42] LAYER-WISE INTERPRETATION OF DEEP NEURAL NETWORKS USING IDENTITY INITIALIZATION
    Kubota, Shohei
    Hayashi, Hideaki
    Hayase, Tomohiro
    Uchida, Seiichi
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3945 - 3949
  • [43] Network with Sub-networks: Layer-wise Detachable Neural Network
    Fuengfusin, Ninnart
    Tamukoh, Hakaru
    [J]. JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2021, 7 (04): : 240 - 244
  • [44] Layer-wise relevance propagation for interpreting LSTM-RNN decisions in predictive maintenance
    Haiyue Wu
    Aihua Huang
    John W. Sutherland
    [J]. The International Journal of Advanced Manufacturing Technology, 2022, 118 : 963 - 978
  • [45] Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation
    Ullah, Ihsan
    Rios, Andre
    Gala, Vaibhav
    Mckeever, Susan
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (01):
  • [46] Layer-wise relevance propagation of InteractionNet explains protein–ligand interactions at the atom level
    Hyeoncheol Cho
    Eok Kyun Lee
    Insung S. Choi
    [J]. Scientific Reports, 10
  • [47] Layer-wise relevance propagation for interpreting LSTM-RNN decisions in predictive maintenance
    Wu, Haiyue
    Huang, Aihua
    Sutherland, John W.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 118 (3-4): : 963 - 978
  • [48] A Layer-Wise Theoretical Framework for Deep Learning of Convolutional Neural Networks
    Huu-Thiet Nguyen
    Li, Sitan
    Cheah, Chien Chern
    [J]. IEEE ACCESS, 2022, 10 : 14270 - 14287
  • [49] Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
    Eitel, Fabian
    Soehler, Emily
    Bellmann-Strobl, Judith
    Brandt, Alexander U.
    Ruprecht, Klemens
    Giess, Rene M.
    Kuchling, Joseph
    Asseyer, Susanna
    Weygandt, Martin
    Haynes, John-Dylan
    Scheel, Michael
    Paul, Friedemann
    Ritter, Kerstin
    [J]. NEUROIMAGE-CLINICAL, 2019, 24
  • [50] Deep Convolutional Neural Networks with Layer-wise Context Expansion and Attention
    Yu, Dong
    Xiong, Wayne
    Droppo, Jasha
    Stolcke, Andreas
    Ye, Guoli
    Li, Jinyu
    Zweig, Geoffrey
    [J]. 17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 17 - 21