Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers

被引:179
|
作者
Binder, Alexander [1 ]
Montavon, Gregoire [2 ]
Lapuschkin, Sebastian [3 ]
Mueller, Klaus-Robert [2 ,4 ]
Samek, Wojciech [3 ]
机构
[1] Singapore Univ Technol & Design, ISTD Pillar, Singapore, Singapore
[2] Tech Univ Berlin, Machine Learning Grp, Berlin, Germany
[3] Fraunhofer Heinrich Hertz Inst, Machine Learning Grp, Berlin, Germany
[4] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
关键词
Neural networks; Image classification; Interpretability;
D O I
10.1007/978-3-319-44781-0_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Layer-wise relevance propagation is a framework which allows to decompose the prediction of a deep neural network computed over a sample, e.g. an image, down to relevance scores for the single input dimensions of the sample such as subpixels of an image. While this approach can be applied directly to generalized linear mappings, product type non-linearities are not covered. This paper proposes an approach to extend layer-wise relevance propagation to neural networks with local renormalization layers, which is a very common product-type non-linearity in convolutional neural networks. We evaluate the proposed method for local renormalization layers on the CIFAR-10, Imagenet and MIT Places datasets.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
  • [1] Explaining Therapy Predictions with Layer-wise Relevance Propagation in Neural Networks
    Yang, Yinchong
    Tresp, Volker
    Wunderle, Marius
    Fasching, Peter A.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 152 - 162
  • [2] Interpreting Convolutional Neural Networks via Layer-Wise Relevance Propagation
    Jia, Wohuan
    Zhang, Shaoshuai
    Jiang, Yue
    Xu, Li
    [J]. ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 457 - 467
  • [3] Explanation of Multi-Label Neural Networks with Layer-Wise Relevance Propagation
    Bello, Marilyn
    Napoles, Gonzalo
    Vanhoof, Koen
    Garcia, Maria M.
    Bello, Rafael
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [4] Evaluating Layer-wise Relevance Propagation Explainability Maps for Artificial Neural Networks
    Ranguelova, Elena
    Pauwels, Eric J.
    Berkhout, Joost
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE 2018), 2018, : 377 - 378
  • [5] Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation
    Iwana, Brian Kenji
    Kuroki, Ryohei
    Uchida, Seiichi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 4176 - 4185
  • [6] Layer-wise relevance propagation for backbone identification in discrete fracture networks
    Berrone, Stefano
    Della Santa, Francesco
    Mastropietro, Antonio
    Pieraccini, Sandra
    Vaccarino, Francesco
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 55
  • [7] Beyond saliency: Understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
    Li, Heyi
    Tian, Yunke
    Mueller, Klaus
    Chen, Xin
    [J]. IMAGE AND VISION COMPUTING, 2019, 83-84 : 70 - 86
  • [8] LRP2A: Layer-wise Relevance Propagation based Adversarial attacking for Graph Neural Networks
    Liu, Li
    Du, Yong
    Wang, Ye
    Cheung, William K.
    Zhang, Youmin
    Liu, Qun
    Wang, Guoyin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [9] A Visual Designer of Layer-wise Relevance Propagation Models
    Huang, Xinyi
    Jamonnak, Suphanut
    Zhao, Ye
    Wu, Tsung Heng
    Xu, Wei
    [J]. COMPUTER GRAPHICS FORUM, 2021, 40 (03) : 227 - 238
  • [10] Hierarchical Neural Network with Layer-wise Relevance Propagation for Interpretable Multiclass Neural State Classification
    Ellis, Charles A.
    Sendi, Mohammad S. E.
    Willie, Jon T.
    Mahmoudi, Babak
    [J]. 2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 351 - 354