The Total Approximation Method for the Dirichlet Problem for Multidimensional Sobolev-Type Equations

被引:0
|
作者
Beshtokov, M. Kh. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math & Automation, Kabardin Balkar Sci Ctr, 89 Shortanova Str, Nalchik 360004, Russia
关键词
boundary value problems; a priori estimate; multidimensional Sobolev-type equation; Dirichlet problem; locally one-dimensional scheme; stability; convergence; BOUNDARY-VALUE-PROBLEM; DIFFERENCE METHOD;
D O I
10.3103/S1066369X22040028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem for a multidimensional Sobolev-type differential equation with variable coefficients. The considered equation is reduced to a parabolic integrodifferential equation with a small parameter. To solve the obtained problem approximately, we construct a locally one-dimensional difference scheme. Using the method of energy inequalities, we obtain an a priori estimate of the solution of the locally one-dimensional difference scheme, which implies its stability and convergence. For a two-dimensional problem, an algorithm for the numerical solution of the posed problem is constructed and numerical experiments are carried out on test examples. This illustrates the theoretical results obtained in this work.
引用
收藏
页码:12 / 23
页数:12
相关论文
共 50 条
  • [1] The Total Approximation Method for the Dirichlet Problem for Multidimensional Sobolev-Type Equations
    M. Kh. Beshtokov
    Russian Mathematics, 2022, 66 : 12 - 23
  • [2] ON A CLASS OF SOBOLEV-TYPE EQUATIONS
    Sukacheva, T. G.
    Kondyukov, A. O.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (04): : 5 - 21
  • [3] Periodic boundary value problem for nonlinear Sobolev-type equations
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 171 - 181
  • [4] Periodic boundary value problem for nonlinear Sobolev-type equations
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    Functional Analysis and Its Applications, 2010, 44 : 171 - 181
  • [5] Rational approximation and Sobolev-type orthogonality
    Diaz-Gonzalez, Abel
    Pijeira-Cabrera, Hector
    Perez-Yzquierdo, Ignacio
    JOURNAL OF APPROXIMATION THEORY, 2020, 260
  • [6] The Sobolev-type moment problem
    Marcellán, F
    Szafraniec, FH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) : 2309 - 2317
  • [7] On Sobolev-type equations with critical nonlinearities
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    Doklady Mathematics, 2006, 74 : 672 - 675
  • [8] OSKOLKOV MODELS AND SOBOLEV-TYPE EQUATIONS
    Sukacheva, T. G.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2022, 15 (01): : 5 - 22
  • [9] The Solvability of the Cauchy Problem for a Class of Sobolev-Type Equations in Tempered Distributions
    A. L. Pavlov
    Siberian Mathematical Journal, 2022, 63 : 940 - 955
  • [10] On Sobolev-type equations with critical nonlinearities
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    DOKLADY MATHEMATICS, 2006, 74 (02) : 672 - 675