On Sobolev-type equations with critical nonlinearities

被引:0
|
作者
Kaikina, E. I. [1 ]
Naumkin, P. I. [1 ]
Shishmarev, I. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562406050140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The large-time asymptotic behavior of the solutions to the Cauchy problem for the nonlinear Sobolev-type equation, is discussed. The considered Cauchy problem consists of critical nonlinearity for any spatial dimension n ≥1. The approach does not apply to higher dimensions as the lower estimate of the order of nonlinearity exceeds the critical value of σ = 1/n. An energy-type weighted a priori estimate for solutions is obtained to calculate the large-time asymptotics of the solutions.
引用
收藏
页码:672 / 675
页数:4
相关论文
共 50 条
  • [1] On Sobolev-type equations with critical nonlinearities
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    Doklady Mathematics, 2006, 74 : 672 - 675
  • [2] ON A CLASS OF SOBOLEV-TYPE EQUATIONS
    Sukacheva, T. G.
    Kondyukov, A. O.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (04): : 5 - 21
  • [3] OSKOLKOV MODELS AND SOBOLEV-TYPE EQUATIONS
    Sukacheva, T. G.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2022, 15 (01): : 5 - 22
  • [4] Linear Sobolev-type equations of high order
    Sviridyuk, GA
    Vakarina, OV
    DOKLADY AKADEMII NAUK, 1998, 363 (03) : 308 - 310
  • [5] On differential equations for Sobolev-type Laguerre polynomials
    Koekoek, J
    Koekoek, R
    Bavinck, H
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) : 347 - 393
  • [6] Logarithmic nature of the long-time asymptotics of solutions of a Sobolev-type nonlinear equations with cubic nonlinearities
    Naumkin, P., I
    SBORNIK MATHEMATICS, 2023, 214 (07) : 1024 - 1050
  • [7] Sobolev-Type Nonlocal Conformable Stochastic Differential Equations
    Hamdy Ahmed
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1747 - 1761
  • [8] NUMERICAL SOLUTION FOR NONLOCAL SOBOLEV-TYPE DIFFERENTIAL EQUATIONS
    Dubey, Shruti A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, : 75 - 83
  • [9] On a study of Sobolev-type fractional functional evolution equations
    Huseynov, Ismail T.
    Ahmadova, Arzu
    Mahmudov, Nazim, I
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) : 5002 - 5042
  • [10] GALERKIN APPROXIMATIONS TO SOBOLEV-TYPE SINGULAR NONLINEAR EQUATIONS
    SVIRIDYUK, GA
    SUKACHEVA, TG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (10): : 44 - 47