Study on the biological effect of Tourmaline on the cell membrane of E. coli

被引:29
|
作者
Qiu, Shan [1 ]
Ma, Fang [1 ]
Wo, Yuan [1 ]
Xu, Shanwen [1 ]
机构
[1] Harbin Inst Technol, State Lab Urban Water Resources & Environm, Harbin 150006, Peoples R China
关键词
tourmaline; cell membrane; polarization; permeability; damage; LASER KINETIC SPECTROSCOPY; ESCHERICHIA-COLI; ATR-FTIR; TIO2; PHOSPHATIDYLCHOLINE; MICROSCOPY; DYNAMICS; SYSTEM;
D O I
10.1002/sia.3694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The biological effect of tourmaline on the cell membrane of E. coli by microcalorimetry, fluorescence polarization, ion analysis and fourier transform infrared was studied. It was observed that tourmaline of low concentration can promote growth of the bacteria, while tourmaline of high concentration has inhibitory effects on E. coli. Fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. The ion analysis result suggested that the absorbability of nutrition from the medium becomes easier. Thus, E. coli grew faster in the presence of tourmaline than the native. With high concentration of tourmaline, however, the growth of E. coli was inhibited because the selective barrier of cell membrane for the bacteria was seriously damaged. Besides, changes of the spectral profile of E. coli were observed, which has shown the damages of surface groups on the cell membrane, which is the molecular basis for the biological effect of tourmaline. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:1069 / 1073
页数:5
相关论文
共 50 条
  • [21] Membrane rigidity regulates E. coli proliferation rates
    Salinas-Almaguer, Samuel
    Mell, Michael
    Almendro-Vedia, Victor G.
    Calero, Macarena
    Robledo-Sanchez, Kevin Carlo Martin
    Ruiz-Suarez, Carlos
    Alarcon, Tomas
    Barrio, Rafael A.
    Hernandez-Machado, Aurora
    Monroy, Francisco
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] Membrane rigidity regulates E. coli proliferation rates
    Samuel Salinas-Almaguer
    Michael Mell
    Victor G. Almendro-Vedia
    Macarena Calero
    Kevin Carlo Martín Robledo-Sánchez
    Carlos Ruiz-Suarez
    Tomás Alarcón
    Rafael A. Barrio
    Aurora Hernández-Machado
    Francisco Monroy
    Scientific Reports, 12
  • [23] Physiological Response to Membrane Protein Overexpression in E. coli
    Gubellini, Francesca
    Verdon, Gregory
    Karpowich, Nathan K.
    Luff, Jon D.
    Boel, Gregory
    Gauthier, Nils
    Handelman, Samuel K.
    Ades, Sarah E.
    Hunt, John F.
    MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (10)
  • [24] The interaction of melittin with E. coli membrane: The role of cardiolipin
    Hung, WC
    Lee, MT
    CHINESE JOURNAL OF PHYSICS, 2006, 44 (02) : 137 - 149
  • [25] TOPOGRAPHY OF CARDIOLIPIN SYNTHASES IN THE PLASMA MEMBRANE OF E. coli
    Ivanova, V. V.
    Nevzorova, T. A.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA ESTESTVENNYE NAUKI, 2013, 155 (02): : 120 - 126
  • [26] Genetic Engineering of Membrane Lipid Composition in E. Coli
    Budin, Itay
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 188A - 188A
  • [27] Study of Methyletransferase RumB in E. coli
    Pritts, Jordan
    Zilinskas, Egidijus
    FASEB JOURNAL, 2015, 29
  • [28] Timing the Start of Division in E. coli: a Single-Cell Study
    Reshes, Galina
    Tsukanov, Roman
    Vanounou, Sharon
    Fishov, Itzhak
    Feingold, Mario
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 631A - 631A
  • [29] Improvement of environmental tolerance of E. coli through biological membrane engineering to boost succinic acid conversion
    Jiang, Yujia
    Pan, Runze
    Tao, Yuxuan
    Xiao, Wenlong
    Jiang, Wankui
    Xin, Fengxue
    Zhang, Wenming
    Jiang, Min
    BIOCHEMICAL ENGINEERING JOURNAL, 2023, 198
  • [30] E. coli
    Wiesenthal, Christine
    FIDDLEHEAD, 2010, (243): : 69 - 69