Implementation of a Least-Squares Multi-Harmonic Fitting Algorithm in the Multicore Cell Processor

被引:0
|
作者
Santos, Jose [1 ]
Ramos, Pedro M. [2 ]
机构
[1] Univ Tecn Lisboa, IST, Inst Telecomunicacoes, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, IST, DEEC, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
关键词
Multi-harmonic fitting; least-squares method; Cell processor; SINE; CONVERGENCE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Least squares (LS) methods minimize the LS error between a specific data model and an acquired data set. This is the case of sine-fitting algorithms, which are used to determine the sine wave parameters that best fit an acquired signal. In the case of signals with multiple harmonics, one can use a multi-harmonic fitting algorithm resembling the sine-fitting algorithm to estimate the amplitudes and phases of the harmonics. This paper describes the implementation of a LS multi-harmonic fitting algorithm using the multicore Cell processor to determine the fundamental frequency of a multi-harmonic signal and then the harmonic amplitudes and phases.
引用
收藏
页码:2716 / 2721
页数:6
相关论文
共 50 条
  • [1] Convergence of least-squares multi-harmonic fitting algorithm
    Ramos, Pedro M.
    Serra, A. Cruz
    2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 1982 - +
  • [2] ON THE USE OF MULTI-HARMONIC LEAST-SQUARES FITTING FOR THD ESTIMATION IN POWER QUALITY ANALYSIS
    Ramos, Pedro M.
    Janeiro, Fernando M.
    Radil, Tomas
    METROLOGY AND MEASUREMENT SYSTEMS, 2012, 19 (02) : 295 - 306
  • [3] Non recursive multi-harmonic least squares fitting for grid frequency estimation
    Giarnetti, S.
    Leccese, F.
    Caciotta, M.
    MEASUREMENT, 2015, 66 : 229 - 237
  • [4] LEAST-SQUARES TYPE ALGORITHM FOR ADAPTIVE IMPLEMENTATION OF PISARENKOS HARMONIC RETRIEVAL METHOD
    REDDY, VU
    EGARDT, B
    KAILATH, T
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (03): : 399 - 405
  • [5] Least-squares fitting by circles
    Spath, H
    COMPUTING, 1996, 57 (02) : 179 - 185
  • [6] DATA FITTING BY LEAST-SQUARES
    ALVAREZNAZARIO, F
    JOURNAL OF THE ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS, 1975, 58 (06): : 1138 - 1142
  • [7] Least-squares fitting of polygons
    Sinnreich J.
    Pattern Recognition and Image Analysis, 2016, 26 (2) : 343 - 349
  • [8] Least-squares fitting by circles
    Fachbereich Mathematik, Carl Von Ossietzky Univ. Oldenburg, Postfach 25 03, 26111 Oldenburg, Germany
    Comput Vienna New York, 2 (179-185):
  • [9] Least-squares fitting of circles
    Ratkó, I
    15TH INTERNATIONAL CONGRESS ON CYBERNETICS, PROCEEDINGS, 1999, : 689 - 694
  • [10] A LEAST-SQUARES ALGORITHM FOR FITTING ADDITIVE TREES TO PROXIMITY DATA
    DESOETE, G
    PSYCHOMETRIKA, 1983, 48 (04) : 621 - 626