Matrix Resolvent and the Discrete KdV Hierarchy

被引:9
|
作者
Dubrovin, Boris [1 ]
Yang, Di [2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] USTC, Sch Math Sci, Hefei 230026, Peoples R China
关键词
GROMOV-WITTEN INVARIANTS; HODGE INTEGRALS;
D O I
10.1007/s00220-020-03770-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the matrix-resolvent approach, for an arbitrary solution to the discrete KdV hierarchy, we define the tau-function of the solution, and compare it with another tau-function of the solution defined via reduction of the Toda lattice hierarchy. Explicit formulae for generating series of logarithmic derivatives of the tau-functions are obtained, and applications to enumeration of ribbon graphs with even valencies and to certain special cubic Hodge integrals are considered.
引用
收藏
页码:1823 / 1852
页数:30
相关论文
共 50 条