Early Detection of Pancreatic Intraepithelial Neoplasias (PanINs) in Transgenic Mouse Model by Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy

被引:12
|
作者
Dutta, Prasanta [1 ]
Pando, Susana Castro [2 ]
Mascaro, Marilina [2 ]
Riquelme, Erick [2 ]
Zoltan, Michelle [2 ]
Zacharias, Niki M. [1 ,3 ]
Gammon, Seth T. [1 ]
Piwnica-Worms, David [1 ]
Pagel, Mark D. [1 ]
Sen, Subrata [4 ]
Maitra, Anirban [5 ]
Shams, Shayan [6 ]
McAllister, Florencia [2 ]
Bhattacharya, Pratip K. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Canc Syst Imaging, Houston, TX 77054 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Clin Canc Prevent, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Urol, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Pathol, Houston, TX 77030 USA
[6] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
metabolic plasticity and PanINs progression; metabolic imaging; metabolic rewiring; kinetic rate constant and modeling; early detection; pancreatic cancer; hyperpolarization; MRS; CANCER; DISEASE; IL-17;
D O I
10.3390/ijms21103722
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (H-1-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-C-13] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (k(PA) and k(PL)) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] DNP-Hyperpolarized 13C Magnetic Resonance Metabolic Imaging for Cancer Applications
    S. J. Nelson
    D. Vigneron
    J. Kurhanewicz
    A. Chen
    R. Bok
    R. Hurd
    Applied Magnetic Resonance, 2008, 34 : 533 - 544
  • [12] Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis
    Golman, Klaes
    in't Zandt, Rene
    Lerche, Mathilde
    Pehrson, Rikard
    Ardenkjaer-Larsen, Jan Henrik
    CANCER RESEARCH, 2006, 66 (22) : 10855 - 10860
  • [13] HYPERPOLARIZED 13C MAGNETIC RESONANCE SPECTROSCOPY IDENTIFIES CHANGES TO MYOCARDIAL METABOLIC FLUXES IN A RAT MODEL OF DOXORUBICIN-INDUCED CARDIOTOXICITY
    Timm, K. N.
    Miller, J. J.
    Ball, V.
    Henry, J. A.
    Savic, D.
    Dodd, M. S.
    Tyler, D. J.
    HEART, 2018, 104 : A7 - A8
  • [14] Noninvasive rapid detection of metabolic adaptation in activated human T lymphocytes by hyperpolarized 13C magnetic resonance
    Emine Can
    Mor Mishkovsky
    Hikari A. I. Yoshihara
    Nicolas Kunz
    Dominique-Laurent Couturier
    Ulf Petrausch
    Marie-Agnès Doucey
    Arnaud Comment
    Scientific Reports, 10
  • [15] Noninvasive rapid detection of metabolic adaptation in activated human T lymphocytes by hyperpolarized 13C magnetic resonance
    Can, Emine
    Mishkovsky, Mor
    Yoshihara, Hikari A., I
    Kunz, Nicolas
    Couturier, Dominique-Laurent
    Petrausch, Ulf
    Doucey, Marie-Agnes
    Comment, Arnaud
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [16] Imaging tumour cell metabolism using hyperpolarized 13C magnetic resonance spectroscopy
    Witney, Timothy H.
    Brindle, Kevin M.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2010, 38 : 1220 - 1224
  • [17] Using Hyperpolarized 13C Magnetic Resonance Spectroscopy to Detect Radiation Induced Lung Injury at an Early Stage
    Thind, K.
    Ouriadov, A.
    Feiesen-Waldner, L.
    Chen, A.
    Scholl, T.
    Fox, M.
    Wong, E.
    VanDyk, J.
    Hill, R.
    Hope, A.
    Santyr, G.
    MEDICAL PHYSICS, 2011, 38 (06) : 3742 - +
  • [18] Detection of Tumor Glutamate Metabolism In Vivo Using 13C Magnetic Resonance Spectroscopy and Hyperpolarized [1-13C]glutamate
    Gallagher, Ferdia A.
    Kettunen, Mikko I.
    Day, Sam E.
    Hu, De-en
    Karlsson, Magnus
    Gisselsson, Anna
    Lerche, Mathilde H.
    Brindle, Kevin M.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (01) : 18 - 23
  • [19] Detection of Transgene Expression Using Hyperpolarized 13C Urea and Diffusion-Weighted Magnetic Resonance Spectroscopy
    Patrick, P. Stephen
    Kettunen, Mikko I.
    Tee, Sui-Seng
    Rodrigues, Tiago B.
    Serrao, Eva
    Timm, Kerstin N.
    McGuire, Sarah
    Brindle, Kevin M.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (04) : 1401 - 1406
  • [20] Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging
    Thind, K.
    Chen, A.
    Friesen-Waldner, L.
    Ouriadov, A.
    Scholl, T. J.
    Fox, M.
    Wong, E.
    VanDyk, J.
    Hope, A.
    Santyr, G.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (03) : 601 - 609