Benchmarking Domain Randomisation for Visual Sim-to-Real Transfer

被引:7
|
作者
Alghonaim, Raghad [1 ]
Johns, Edward [1 ]
机构
[1] Imperial Coll London, Robot Learning Lab, London, England
关键词
SIMULATION;
D O I
10.1109/ICRA48506.2021.9561134
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Domain randomisation is a very popular method for visual sim-to-real transfer in robotics, due to its simplicity and ability to achieve transfer without any real-world images at all. Nonetheless, a number of design choices must be made to achieve optimal transfer. In this paper, we perform a comprehensive benchmarking study on these different choices, with two key experiments evaluated on a real-world object pose estimation task. First, we study the rendering quality, and find that a small number of high-quality images is superior to a large number of low-quality images. Second, we study the type of randomisation, and find that both distractors and textures are important for generalisation to novel environments.
引用
收藏
页码:12802 / 12808
页数:7
相关论文
共 50 条
  • [1] Enhancing Visual Domain Randomization with Real Images for Sim-to-Real Transfer
    Beres, Andras
    Gyires-Toth, Balint
    INFOCOMMUNICATIONS JOURNAL, 2023, 15 (01): : 15 - 25
  • [2] Sim-to-Real Neural Learning with Domain Randomisation for Humanoid Robot Grasping
    Gaede, Connor
    Kerzel, Matthias
    Strahl, Erik
    Wermter, Stefan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT I, 2022, 13529 : 342 - 354
  • [3] DROPO: Sim-to-real transfer with offline domain randomization
    Tiboni, Gabriele
    Arndt, Karol
    Kyrki, Ville
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 166
  • [4] Robust visual sim-to-real transfer for robotic manipulation
    Garcia, Ricardo
    Strudel, Robin
    Chen, Shizhe
    Arlaud, Etienne
    Laptev, Ivan
    Schmid, Cordelia
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 992 - 999
  • [5] Benchmarking the Sim-to-Real Gap in Cloth Manipulation
    Blanco-Mulero, David
    Barbany, Oriol
    Alcan, Gokhan
    Colome, Adria
    Torras, Carme
    Kyrki, Ville
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2981 - 2988
  • [6] Sim-to-Real Transfer for Biped Locomotion
    Yu, Wenhao
    Kumar, Visak C. V.
    Turk, Greg
    Liu, C. Karen
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 3503 - 3510
  • [7] Unsupervised Adversarial Domain Adaptation for Sim-to-Real Transfer of Tactile Images
    Jing, Xingshuo
    Qian, Kun
    Jianu, Tudor
    Luo, Shan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [8] Efficient Sim-to-Real Transfer in Reinforcement Learning Through Domain Randomization and Domain Adaptation
    Shakerimov, Aidar
    Alizadeh, Tohid
    Varol, Huseyin Atakan
    IEEE ACCESS, 2023, 11 : 136809 - 136824
  • [9] Auto-Tuned Sim-to-Real Transfer
    Du, Yuqing
    Watkins, Olivia
    Darrell, Trevor
    Abbeel, Pieter
    Pathak, Deepak
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 1290 - 1296
  • [10] Sim-to-Real Transfer for Optical Tactile Sensing
    Ding, Zihan
    Lepora, Nathan F.
    Johns, Edward
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 1639 - 1645