On the robust stability of commensurate fractional-order systems

被引:8
|
作者
Casagrande, Daniele [1 ]
Krajewski, Wieslaw [2 ]
Viaro, Umberto [1 ]
机构
[1] Univ Udine, Polytech Dept Engn & Architecture, Via Sci 206, I-33100 Udine, Italy
[2] Polish Acad Sci, Syst Res Inst, Ul Newelska 6, PL-01447 Warsaw, Poland
关键词
INTERVAL SYSTEMS;
D O I
10.1016/j.jfranklin.2022.05.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on a recent generalised version of the Mikhailov stability criterion, this paper presents a Kharitonov-like test for a class of linear fractional-order systems described by transfer functions whose coefficients are subject to interval uncertainties. To this purpose, first the transfer function is associated with an integer-order complex polynomial function of the generalised frequency (i.e. the current coordinate along the boundary radii of the instability sector) whose coefficients are uncertain. Then the geometrical form of the value set of this characteristic polynomial is determined from the direct examination of its monomial terms. To show how the test operates, it is finally applied to two fractional-order transfer functions whose coefficients belong to given intervals. (c) 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5559 / 5574
页数:16
相关论文
共 50 条
  • [41] Impulse response of commensurate fractional-order systems: multiple complex poles
    Dalibor Biolek
    Roberto Garrappa
    Viera Biolková
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 1837 - 1851
  • [42] Impulse response of commensurate fractional-order systems: multiple complex poles
    Biolek, Dalibor
    Garrappa, Roberto
    Biolkova, Viera
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) : 1837 - 1851
  • [43] Basis Functions for a Transient Analysis of Linear Commensurate Fractional-Order Systems
    Biolek, Dalibor
    Biolkova, Viera
    Kolka, Zdenek
    Biolek, Zdenek
    [J]. ALGORITHMS, 2023, 16 (07)
  • [44] The FCC Stability Criterion for Fractional-Order Linear Time-Invariant Systems with Commensurate or Incommensurate Orders
    Dabiri, Arman
    Butcher, Eric A.
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2839 - 2844
  • [45] Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order α: The 0 < α < 1 Case
    Lu, Jun-Guo
    Chen, Yang-Quan
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (01) : 152 - 158
  • [46] Model order reduction of commensurate linear discrete-time fractional-order systems
    Rydel, Marek
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    Galek, Marcin
    [J]. IFAC PAPERSONLINE, 2018, 51 (01): : 536 - 541
  • [47] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Kai Chen
    Rongnian Tang
    Chuang Li
    Pengna Wei
    [J]. Nonlinear Dynamics, 2018, 94 : 415 - 427
  • [48] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Chen, Kai
    Tang, Rongnian
    Li, Chuang
    Wei, Pengna
    [J]. NONLINEAR DYNAMICS, 2018, 94 (01) : 415 - 427
  • [49] A stability test for non-commensurate fractional order systems
    Sabatier, Jocelyn
    Farges, Christophe
    Trigeassou, Jean-Claude
    [J]. SYSTEMS & CONTROL LETTERS, 2013, 62 (09) : 739 - 746
  • [50] Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems
    Ibrahima N’Doye
    Khaled Nabil Salama
    Taous-Meriem Laleg-Kirati
    [J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (01) : 268 - 277