Extracting the chemical-induced disease relation from literatures is important for biomedical research. On one hand, it is challenging to capture the interactions among remote words and the long-distance information is not adequately exploited by existing systems for document-level relation extraction. On the other hand, there is some information particularly important to the target relations in documents, which should attract more attention than the less relevant information for the relation extraction. However, this issue is not well addressed in existing methods. In this paper, we present a method that integrates a hybrid graph and a hierarchical concentrative attention to overcome these problems. The hybrid graph is constructed by synthesizing the syntactic graph and Abstract Meaning Representation graph to acquire the long-distance information for document-level relation extraction. Meanwhile, the concentrative attention is used to focus on the most important information, and alleviate the disturbance brought by the less relevant items in the document. The experimental results demonstrate that our model yields competitive performance on the dataset of chemical-induced disease relations.