Few-shot learning with adaptively initialized task optimizer: a practical meta-learning approach

被引:34
|
作者
Ye, Han-Jia [1 ]
Sheng, Xiang-Rong [1 ]
Zhan, De-Chuan [1 ]
机构
[1] Nanjing Univ, Nanjing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Few-shot learning; Meta-learning; Supervised-learning; Multi-task learning; Task-specific; MODEL;
D O I
10.1007/s10994-019-05838-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering the data collection and labeling cost in real-world applications, training a model with limited examples is an essential problem in machine learning, visual recognition, etc. Directly training a model on such few-shot learning (FSL) tasks falls into the over-fitting dilemma, which would turn to an effective task-level inductive bias as a key supervision. By treating the few-shot task as an entirety, extracting task-level pattern, and learning a task-agnostic model initialization, the model-agnostic meta-learning (MAML) framework enables the applications of various models on the FSL tasks. Given a training set with a few examples, MAML optimizes a model via fixed gradient descent steps from an initial point chosen beforehand. Although this general framework possesses empirically satisfactory results, its initialization neglects the task-specific characteristics and aggravates the computational burden as well. In this manuscript, we propose our AdaptiVely InitiAlized Task OptimizeR (Aviator) approach for few-shot learning, which incorporates task context into the determination of the model initialization. This task-specific initialization facilitates the model optimization process so that it obtains high-quality model solutions efficiently. To this end, we decouple the model and apply a set transformation over the training set to determine the initial top-layer classifier. Re-parameterization of the first-order gradient descent approximation promotes the gradient back-propagation. Experiments on synthetic and benchmark data sets validate that our Aviator approach achieves the state-of-the-art performance, and visualization results demonstrate the task-adaptive features of our proposed Aviator method.
引用
收藏
页码:643 / 664
页数:22
相关论文
共 50 条
  • [21] Meta-Learning for Few-Shot Plant Disease Detection
    Chen, Liangzhe
    Cui, Xiaohui
    Li, Wei
    FOODS, 2021, 10 (10)
  • [22] Meta-Learning for Few-Shot Named Entity Recognition
    de Lichy, Cyprien
    Glaude, Hadrien
    Campbell, William
    1ST WORKSHOP ON META LEARNING AND ITS APPLICATIONS TO NATURAL LANGUAGE PROCESSING (METANLP 2021), 2021, : 44 - 58
  • [23] Meta-Learning for Few-Shot Time Series Classification
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    Vishnu, T. V.
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 28 - 36
  • [24] Amortized Bayesian Prototype Meta-learning: A New Probabilistic Meta-learning Approach to Few-shot Image Classification
    Sun, Zhuo
    Wu, Jijie
    Li, Xiaoxu
    Yang, Wenming
    Xue, Jing-Hao
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [25] Meta-Learning for Few-Shot Land Cover Classification
    Russwurm, Marc
    Wang, Sherrie
    Koerner, Marco
    Lobell, David
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 788 - 796
  • [26] META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
    Wang, Sherrie
    Russwurm, Marc
    Koerner, Marco
    Lobell, David B.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7041 - 7044
  • [27] Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
    Chen, Yinbo
    Liu, Zhuang
    Xu, Huijuan
    Darrell, Trevor
    Wang, Xiaolong
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9042 - 9051
  • [28] Hierarchical Meta-Learning with Hyper-Tasks for Few-Shot Learning
    Guan, Yunchuan
    Liu, Yu
    Zhou, Ke
    Huang, Junyuan
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 587 - 596
  • [29] Decentralized federated meta-learning framework for few-shot multitask learning
    Li, Xiaoli
    Li, Yuzheng
    Wang, Jining
    Chen, Chuan
    Yang, Liu
    Zheng, Zibin
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 8490 - 8522
  • [30] Meta-Learning With Adaptive Learning Rates for Few-Shot Fault Diagnosis
    Chang, Liang
    Lin, Yan-Hui
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 5948 - 5958