AN INDUCTIVE CONSTRUCTION OF (2,1)-TIGHT GRAPHS

被引:0
|
作者
Nixon, Anthony [1 ]
Owen, John C. [2 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Siemens PLM Software, D Cubed, Cambridge CB2 1PH, England
基金
英国工程与自然科学研究理事会;
关键词
(k; l)-tight graph; Henneberg sequence; rigid graph; inductive construction; framework on a surface; PERIODIC FRAMEWORKS; SKELETAL STRUCTURES; RIGIDITY; ALGORITHMS; SURFACES; PLANE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The graphs G = (V, E) with vertical bar E vertical bar = 2 vertical bar V vertical bar - l that satisfy < vertical bar E'vertical bar = 2 vertical bar V'vertical bar - l for any subgraph G' - (V', E') (and for l - 1, 2, 3) are the (2,l)-tight graphs. The Henneberg-Laman theorem characterizes (2, 3)-tight graphs inductively in terms of two simple moves, known as the Henneberg moves. Recently, this has been extended, via the addition of a graph extension move, to the case of (2, 2)-tight simple graphs. Here an alternative characterization is provided by means of vertex-to-K-4 and edge-to-K-3 moves. This is extended to the (2, 1)-tight simple graphs by the addition of an edge joining move.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Exact Algorithms for L(2,1)-Labeling of Graphs
    Frédéric Havet
    Martin Klazar
    Jan Kratochvíl
    Dieter Kratsch
    Mathieu Liedloff
    Algorithmica, 2011, 59 : 169 - 194
  • [22] L(2,1)-labeling of oriented planar graphs
    Calamoneri, T.
    Sinaimeri, B.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (12) : 1719 - 1725
  • [23] The L(2,1)-labeling on Cartesian sum of graphs
    Shao, Zhendong
    Zhang, David
    APPLIED MATHEMATICS LETTERS, 2008, 21 (08) : 843 - 848
  • [24] L(2,1)-labeling of disk intersection graphs
    Chybowska-Sokol, Joanna
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    DISCRETE APPLIED MATHEMATICS, 2020, 277 (277) : 71 - 81
  • [25] On L(2,1)-labeling of generalized Petersen graphs
    Huang, Yuan-Zhen
    Chiang, Chun-Ying
    Huang, Liang-Hao
    Yeh, Hong-Gwa
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 266 - 279
  • [26] On L(2,1)-labeling of generalized Petersen graphs
    Yuan-Zhen Huang
    Chun-Ying Chiang
    Liang-Hao Huang
    Hong-Gwa Yeh
    Journal of Combinatorial Optimization, 2012, 24 : 266 - 279
  • [27] Exact Algorithms for L(2,1)-Labeling of Graphs
    Havet, Frederic
    Klazar, Martin
    Kratochvil, Jan
    Kratsch, Dieter
    Liedloff, Mathieu
    ALGORITHMICA, 2011, 59 (02) : 169 - 194
  • [28] Codes and L(2,1)-labelings in Sierpinski graphs
    Gravier, S
    Klavzar, S
    Mollard, M
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (04): : 671 - 681
  • [29] PAIR L(2,1)-LABELINGS OF INFINITE GRAPHS
    Yeh, Roger K.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 257 - 269
  • [30] Exact algorithms for L(2,1)-labeling of graphs
    Kratochvil, Jan
    Kratsch, Dieter
    Liedloff, Mathieu
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 513 - +