AN INDUCTIVE CONSTRUCTION OF (2,1)-TIGHT GRAPHS

被引:0
|
作者
Nixon, Anthony [1 ]
Owen, John C. [2 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Siemens PLM Software, D Cubed, Cambridge CB2 1PH, England
基金
英国工程与自然科学研究理事会;
关键词
(k; l)-tight graph; Henneberg sequence; rigid graph; inductive construction; framework on a surface; PERIODIC FRAMEWORKS; SKELETAL STRUCTURES; RIGIDITY; ALGORITHMS; SURFACES; PLANE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The graphs G = (V, E) with vertical bar E vertical bar = 2 vertical bar V vertical bar - l that satisfy < vertical bar E'vertical bar = 2 vertical bar V'vertical bar - l for any subgraph G' - (V', E') (and for l - 1, 2, 3) are the (2,l)-tight graphs. The Henneberg-Laman theorem characterizes (2, 3)-tight graphs inductively in terms of two simple moves, known as the Henneberg moves. Recently, this has been extended, via the addition of a graph extension move, to the case of (2, 2)-tight simple graphs. Here an alternative characterization is provided by means of vertex-to-K-4 and edge-to-K-3 moves. This is extended to the (2, 1)-tight simple graphs by the addition of an edge joining move.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Construction of large graphs with no optimal surjective L(2,1)-labelings
    Kral, Daniel
    Skrekovski, Riste
    Tancer, Martin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (02) : 536 - 543
  • [2] Topological Inductive Constructions for Tight Surface Graphs
    Cruickshank, James
    Kitson, Derek
    Power, Stephen C.
    Shakir, Qays
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [3] Topological Inductive Constructions for Tight Surface Graphs
    James Cruickshank
    Derek Kitson
    Stephen C. Power
    Qays Shakir
    Graphs and Combinatorics, 2022, 38
  • [4] L(2,1)-labelling of Graphs
    Havet, Frederic
    Reed, Bruce
    Sereni, Jean-Sebastien
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 621 - +
  • [5] L(2,1)-labeling of Block Graphs
    Panda, B. S.
    Goel, Preeti
    ARS COMBINATORIA, 2015, 119 : 71 - 95
  • [6] On L(2,1)-Labelings of Oriented Graphs
    Colucci, Lucas
    Gyori, Ervin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 39 - 46
  • [7] The L(2,1)-labeling problem on graphs
    Chang, GJ
    Kuo, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 309 - 316
  • [8] L(2,1)-LABELING OF CIRCULANT GRAPHS
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 143 - 155
  • [9] L(2,1)-labelings of subdivisions of graphs
    Chang, Fei-Huang
    Chia, Ma-Lian
    Kuo, David
    Liaw, Sheng-Chyang
    Tsai, Meng-Hsuan
    DISCRETE MATHEMATICS, 2015, 338 (02) : 248 - 255
  • [10] L(2,1)-coloring matrogenic graphs
    Calamoneri, T
    Petreschi, R
    LATIN 2002: THEORETICAL INFORMATICS, 2002, 2286 : 236 - 247