Numerical Analysis of Transmission Lines Equation by new β-method Schemes

被引:1
|
作者
Allali, Fatima [1 ]
Alaa, Nour Eddine [2 ]
Ghammaz, Abdelilah [1 ]
Rouijaa, Hicham [1 ]
机构
[1] Univ Cadi Ayyad, Lab LSET Morocco, Marrakech, Morocco
[2] Univ Cadi Ayyad, Lab LAMAI Morocco, Marrakech, Morocco
关键词
transmission lines; finite-difference time-domain (FDTD); electromagnetic propagation; fourth order; beta method; numerical stability; truncation error;
D O I
10.1515/auom-2017-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a new beta-method applied to the resolution of homogeneous transmission lines. A comparison with conventional methods used for this type of problems like FDTD method or classical beta-method is also given. Furthermore, various numerical experiments are presented to confirm the accuracy, efficiency and stability of our proposed method. In particular, these simulations show that our new scheme is unconditionally stable and fourth-order accurate in space and time.
引用
收藏
页码:25 / 38
页数:14
相关论文
共 50 条
  • [21] Inverse scattering transform numerical schemes for nonlinear evolution equations and the method of lines
    Taha, TR
    APPLIED NUMERICAL MATHEMATICS, 1996, 20 (1-2) : 181 - 187
  • [22] Geometric numerical schemes for the KdV equation
    D. Dutykh
    M. Chhay
    F. Fedele
    Computational Mathematics and Mathematical Physics, 2013, 53 : 221 - 236
  • [23] Geometric numerical schemes for the KdV equation
    Dutykh, D.
    Chhay, M.
    Fedele, F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 221 - 236
  • [24] A new deterministic numerical method for the Boltzmann equation
    Rjasanow, S
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2113 - 2116
  • [25] Conservative numerical schemes for the Ostrovsky equation
    Yaguchi, Takaharu
    Matsuo, Takayasu
    Sugihara, Masaaki
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) : 1036 - 1048
  • [26] Conservative numerical schemes for the Vlasov equation
    Filbet, F
    Sonnendrücker, E
    Bertrand, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) : 166 - 187
  • [27] Linearized numerical schemes for the Boussinesq equation
    Bratsos, AG
    Natsis, D
    Kotsakis, V
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 56 - 59
  • [28] On the convergence of numerical schemes for the Boltzmann equation
    Horsin, T
    Mischler, S
    Vasseur, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05): : 731 - 758
  • [29] ERROR ANALYSIS OF NUMERICAL SCHEMES FOR THE WAVE-EQUATION IN HETEROGENEOUS MEDIA
    SEI, A
    SYMES, WW
    APPLIED NUMERICAL MATHEMATICS, 1994, 15 (04) : 465 - 480
  • [30] ANALYSIS OF 4 NUMERICAL SCHEMES FOR A NONLINEAR KLEIN-GORDON EQUATION
    JIMENEZ, S
    VAZQUEZ, L
    APPLIED MATHEMATICS AND COMPUTATION, 1990, 35 (01) : 61 - 94