Yield estimation of summer maize based on multi-source remote-sensing data

被引:5
|
作者
Wang, Jingshu [1 ]
He, Peng [1 ]
Liu, Zhengchu [1 ]
Jing, Yaodong [1 ]
Bi, Rutian [1 ]
机构
[1] Shanxi Agr Univ, Coll Resources & Environm, Mingxian South Rd 1, Taigu 030801, Peoples R China
关键词
NET PRIMARY PRODUCTIVITY; IMAGE FUSION; MODIS DATA; SURFACE REFLECTANCE; BLENDING LANDSAT; CROP PRODUCTION; USE EFFICIENCY; MODEL; SENTINEL-2; SATELLITE;
D O I
10.1002/agj2.21204
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Accurately estimating regional-scale crop yields is substantial in determining current agricultural production performance and effective agricultural land management. The Yuncheng Basin is an important grain-producing area in the Shanxi Province. This paper used Sentinel 2A with a spatial resolution of 10 m and MODIS with a temporal resolution of 1 d in 2020. The spatial and temporal nonlocal filter-based fusion model (STNLFFM) was used to obtain fused data with a spatial resolution of 10 m and a temporal resolution of 1 d, combined with the Carnegie-Ames-StanfordApproach (CASA) and light-use efficiency model to achieve summer maize (Zea mays L.) yield estimation. The results showed that the fused normalized difference vegetation index (NDVI) could inherit the spatial Sentinel-2A NDVI details and express the spatial differences between smaller features more effectively. The STNLFFM NDVI curve was consistent with the actual summer maize growth condition, which accurately reflects the NDVI trend and local abrupt change information during the summer maize growth period. Moreover, the fused NDVI was influenced by topographic differences and artificial irrigation factors, whereas the summer maize yield in mountainous and plateau areas of the Yuncheng Basin was <5,000 kg ha(-1) and those in the alluvial plain of the Sushui River reached 8,000 kg ha(-1). The accuracy of the yield estimation model constructed based on STNLFFM NDVI (mean absolute percentage error [MAPE] = 5.47%, - 13.74% <= relative error [RE] <= 0.12%) was significantly higher than that of the model based on MODIS NDVI (MAPE = 15.65%, - 19.67% <= RE <= 20.88%), indicating that the use of spatio-temporal fusion technology can effectively improve the summer maize yield estimation accuracy.
引用
收藏
页码:3389 / 3406
页数:18
相关论文
共 50 条
  • [41] The Potential of Moonlight Remote Sensing: A Systematic Assessment with Multi-Source Nightlight Remote Sensing Data
    Liu, Di
    Zhang, Qingling
    Wang, Jiao
    Wang, Yifang
    Shen, Yanyun
    Shuai, Yanmin
    REMOTE SENSING, 2021, 13 (22)
  • [42] Estimation of multi-scale urban vegetation coverage based on multi-source remote sensing images
    Gao Yong-Gang
    Xu Han-Qiu
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2017, 36 (02) : 225 - 234
  • [43] Enhanced Crop Yield Forecasting Using Deep Reinforcement Learning and Multi-source Remote Sensing Data
    Yogita Rahulsing Chavan
    Brinthakumari Swamikan
    Megha Varun Gupta
    Sunil Bobade
    Anu Malhan
    Remote Sensing in Earth Systems Sciences, 2024, 7 (4) : 426 - 442
  • [44] Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
    Raza, Aamir
    Shahid, Muhammad Adnan
    Zaman, Muhammad
    Miao, Yuxin
    Huang, Yanbo
    Safdar, Muhammad
    Maqbool, Sheraz
    Muhammad, Nalain E.
    REMOTE SENSING, 2025, 17 (05)
  • [45] Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China
    Huang, Xiaodong
    Deng, Jie
    Ma, Xiaofang
    Wang, Yunlong
    Feng, Qisheng
    Hao, Xiaohua
    Liang, Tiangang
    CRYOSPHERE, 2016, 10 (05): : 2453 - 2463
  • [46] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    LU Tianqi
    CHEN Shengbo
    TU Yuan
    YU Yan
    CAO Yijing
    JIANG Deyang
    Chinese Geographical Science, 2019, 29 (02) : 192 - 201
  • [47] A GRID-BASED PLATFORM FOR DISTRIBUTED MULTI-SOURCE REMOTE SENSING DATA SHARING
    Li Fan
    Zhang Xu
    Deng Guang
    Yong Shan
    Wang Hong-rong
    DCABES 2009: THE 8TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, PROCEEDINGS, 2009, : 270 - 274
  • [48] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    Tianqi Lu
    Shengbo Chen
    Yuan Tu
    Yan Yu
    Yijing Cao
    Deyang Jiang
    Chinese Geographical Science, 2019, 29 : 192 - 201
  • [49] Analysis of flood inundation in ungauged basins based on multi-source remote sensing data
    Gao, Wei
    Shen, Qiu
    Zhou, Yuehua
    Li, Xin
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (03)
  • [50] Analysis of flood inundation in ungauged basins based on multi-source remote sensing data
    Wei Gao
    Qiu Shen
    Yuehua Zhou
    Xin Li
    Environmental Monitoring and Assessment, 2018, 190