Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris

被引:598
|
作者
Larimer, FW
Chain, P
Hauser, L
Lamerdin, J
Malfatti, S
Do, L
Land, ML
Pelletier, DA
Beatty, JT
Lang, AS
Tabita, FR
Gibson, JL
Hanson, TE
Bobst, C
Torres, JLTY
Peres, C
Harrison, FH
Gibson, J
Harwood, CS
机构
[1] Univ Iowa, Dept Microbiol, Iowa City, IA 52242 USA
[2] Joint Genome Inst, Walnut Creek, CA 94598 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[4] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z3, Canada
[5] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[6] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
D O I
10.1038/nbt923
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [31] Complete Genome Sequence of the Photosynthetic Purple Nonsulfur Bacterium Rhodobacter capsulatus SB 1003
    Strnad, Hynek
    Lapidus, Alla
    Paces, Jan
    Ulbrich, Pavel
    Vlcek, Cestmir
    Paces, Vaclav
    Haselkorn, Robert
    JOURNAL OF BACTERIOLOGY, 2010, 192 (13) : 3545 - 3546
  • [32] Complete Genome Sequence of the Bacteriochlorophyll b-Producing Photosynthetic Bacterium Blastochloris viridis
    Tsukatani, Yusuke
    Hirose, Yuu
    Harada, Jiro
    Misawa, Naomi
    Mori, Keita
    Inoue, Kazuhito
    Tamiaki, Hitoshi
    GENOME ANNOUNCEMENTS, 2015, 3 (05)
  • [33] The photosynthetic apparatus of Rhodopseudomonas palustris:: Structures and organization
    Scheuring, S
    Gonçalves, RP
    Prima, V
    Sturgis, JN
    JOURNAL OF MOLECULAR BIOLOGY, 2006, 358 (01) : 83 - 96
  • [34] Draft Whole-Genome Sequence of the Purple Nonsulfur Photosynthetic Bacterium Rhodopseudomonas rutila R1
    Robertson, Sydney
    Rayyan, Amiera
    Meyer, Terry
    Kyndt, John
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2018, 7 (15):
  • [35] The complete chloroplast genome sequence of Zannichellia palustris (Potamogetonaceae)
    Huang, Lei
    Xu, Xinwei
    MITOCHONDRIAL DNA PART B-RESOURCES, 2023, 8 (05): : 546 - 549
  • [36] Complete chloroplast genome sequence of Parnassia palustris (Celastraceae)
    Yu, Huiying
    Guo, Feiyi
    Liu, Dong
    Zhang, Zhixiang
    MITOCHONDRIAL DNA PART B-RESOURCES, 2019, 4 (01): : 1503 - 1504
  • [37] The complete chloroplast genome sequence of Callitriche palustris (Plantaginaceae)
    Yu, Jiaojun
    Dong, Hongjin
    MITOCHONDRIAL DNA PART B-RESOURCES, 2021, 6 (09): : 2777 - 2778
  • [38] Isolation and Characterization of the Tellurite-Reducing Photosynthetic Bacterium, Rhodopseudomonas palustris Strain TX618
    Xie, Hong Guan
    Xia, Wei
    Chen, Mao
    Wu, Li Chuan
    Tong, Jin
    WATER AIR AND SOIL POLLUTION, 2018, 229 (05):
  • [39] EFFECT OF GROWTH CONDITIONS ON ENZYMES OF CITRIC AND GLYOXYLIC ACID CYCLES IN PHOTOSYNTHETIC BACTERIUM RHODOPSEUDOMONAS-PALUSTRIS
    HAN, TW
    ELEY, JH
    PLANT PHYSIOLOGY, 1972, 49 : 59 - &
  • [40] Isolation and Characterization of the Tellurite-Reducing Photosynthetic Bacterium, Rhodopseudomonas palustris Strain TX618
    Hong Guan Xie
    Wei Xia
    Mao Chen
    Li Chuan Wu
    Jin Tong
    Water, Air, & Soil Pollution, 2018, 229