Common source areas of air pollution vary with haze intensity in the Yangtze River Delta, China

被引:20
|
作者
Chen, Xue [1 ]
Yu, Shaocai [1 ,2 ]
Wang, Liqiang [1 ]
Li, Zhen [1 ]
Zhang, Yibo [1 ]
Li, Mengying [1 ]
Mehmood, Khalid [1 ]
Liu, Weiping [1 ]
Li, Pengfei [3 ]
Lichtfouse, Eric [4 ]
Rosenfeld, Daniel [5 ]
Seinfeld, John H. [2 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ,Res Ctr Air Pollut & Hlth, Hangzhou 310058, Zhejiang, Peoples R China
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] Hebei Agr Univ, Coll Sci & Technol, Baoding 071000, Hebei, Peoples R China
[4] Aix Marseille Univ, Europole Mediterraneen Arbois, Coll France, CEREGE,CNRS,INRAE,IRD, Ave Louis Philibert, Aix En Provence 13545, France
[5] Hebrew Univ Jerusalem, Inst Earth Sci, Jerusalem, Israel
基金
中国国家自然科学基金;
关键词
Yangtze River Delta; Common source area; Regional transport; Severe haze; PM; 5; VERTICAL-DISTRIBUTION PATTERNS; SOURCE APPORTIONMENT; REGIONAL TRANSPORT; PARTICULATE MATTER; PM2.5; HANGZHOU; PARTICLES; EVOLUTION; AEROSOLS; EPISODE;
D O I
10.1007/s10311-020-00976-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rapid development of China's industrialization and urbanization in the past decades has highly decreased air quality. For instance, the Yangtze River Delta, a major economic area in China, is incurring strong haze pollution, yet precise pollution sources are unknown. Here, we hypothesized that sources of haze pollution might be the same in nearby cities within the region. To test this hypothesis, we studied sources in four major cities, Hefei, Hangzhou, Nanjing, and Shanghai, during the strong haze period from November 28 to December 10, 2013. This period was divided into four periods according to air PM2.5 concentrations (PM: particulate matter): slight haze, moderate haze, heavy haze, and severe haze periods. Common pollution source areas were identified for the first time by backward trajectories and concentration weighted trajectory maps of PM2.5. Results show that all cities contain air masses transported from the northwestern and northeastern regions. Emissions came mainly from northern and central China during the moderate haze period and from adjacent provinces during the severe haze period. During the heavy haze period, common sources were mainly located in the Anhui province, while during the severe haze period, common sources were mainly located in the northeastern part of the Anhui province and the western part of the Jiangsu province. Overall, our findings show that areas of pollution sources vary with the intensity of haze pollution. Our mapping method should thus provide more precise information to control air pollution at the regional scale.
引用
收藏
页码:957 / 965
页数:9
相关论文
共 50 条
  • [41] Is China's air pollution control policy effective? Evidence from Yangtze River Delta cities
    Yang, Weixin
    Yuan, Guanghui
    Han, Jingti
    JOURNAL OF CLEANER PRODUCTION, 2019, 220 : 110 - 133
  • [42] Risk-based Prioritization Among Air Pollution Control Strategies in Yangtze River Delta, China
    Zhou, Ying
    Fu, Joshua
    Zhuang, Guoshun
    Levy, Jonathan
    Liu, Yang
    EPIDEMIOLOGY, 2011, 22 (01) : S149 - S149
  • [43] Is collaborative governance effective for air pollution prevention? A case study on the Yangtze river delta region of China
    Wang, Yu
    Zhao, Yihang
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 292
  • [44] Analysis of the spatio-temporal network of air pollution in the Yangtze River Delta urban agglomeration, China
    Yang, Chuanming
    Zhuo, Qingqing
    Chen, Junyu
    Fang, Zhou
    Xu, Yisong
    PLOS ONE, 2022, 17 (01):
  • [45] Does air pollution inhibit manufacturing productivity in Yangtze River Delta, China? Moderating effects of temperature
    Cao, Yaru
    Wang, Qunwei
    Zhou, Dequn
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 306
  • [46] Risk-Based Prioritization among Air Pollution Control Strategies in the Yangtze River Delta, China
    Zhou, Ying
    Fu, Joshua S.
    Zhuang, Guoshun
    Levy, Jonathan I.
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (09) : 1204 - 1210
  • [47] Does air pollution inhibit manufacturing productivity in Yangtze River Delta, China? Moderating effects of temperature
    Cao, Yaru
    Wang, Qunwei
    Zhou, Dequn
    Journal of Environmental Management, 2022, 306
  • [48] Unraveling Street-Level Air Pollution upon a Pivotal City of Yangtze River Delta, China
    Feng, Rui
    Gao, Han
    Wang, Zhuo
    Luo, Kun
    Fan, Jian-ren
    Zheng, Hui-jun
    AEROSOL SCIENCE AND ENGINEERING, 2021, 5 (02) : 166 - 192
  • [49] Fog scavenging of particulate matters in air pollution events: Observation and simulation in the Yangtze River Delta, China
    Qian, Junlong
    Liu, Duanyang
    Yan, Shuqi
    Cheng, Muning
    Liao, Rongwei
    Niu, Shengjie
    Yan, Wenlian
    Zha, Shuyao
    Wang, Lulu
    Chen, Xiaoxiao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 876
  • [50] Assessing the impact of urban road transport development on haze pollution in the Yangtze River Delta region
    Tao, Jing
    Zameer, Hashim
    Song, Haohao
    SCIENTIFIC REPORTS, 2024, 14 (01):