Growth rate of the Richtmyer-Meshkov instability when a rarefaction is reflected

被引:65
|
作者
Wouchuk, JG [1 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
关键词
D O I
10.1063/1.1369119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model is presented that calculates the asymptotic growth rate of the linear Richtmyer-Meshkov instability when a rarefaction is reflected at the contact surface. The result is valid for any value of the incident shock Mach number and initial fluids parameters. There is very good agreement with previous numerical simulations and experiments done at high compressions. The technique developed in the model is seen to be highly accurate and allows us a fast evaluation of the asymptotic normal velocity at the interface. (C) 2001 American Institute of Physics.
引用
收藏
页码:2890 / 2907
页数:18
相关论文
共 50 条
  • [21] Richtmyer-Meshkov instability growth: Experiment, simulation and theory
    Holmes, Richard L.
    Dimonte, Guy
    Fryxell, Bruce
    Gittings, Michael L.
    Grove, John W.
    Schneider, Marilyn
    Sharp, David H.
    Velikovich, Alexander L.
    Weaver, Robert P.
    Zhang, Qiang
    Journal of Fluid Mechanics, 1999, 389 : 55 - 79
  • [22] Analytic theory of Richtmyer-Meshkov instability for the case of reflected rarefraction wave
    Velikovich, Alexander L.
    Physics of Fluids, 1996, 8 (06):
  • [23] Nonlinear analytic growth rate of a single-mode Richtmyer-Meshkov instability
    Vandenboomgaerde, M
    LASER AND PARTICLE BEAMS, 2003, 21 (03) : 317 - 319
  • [24] On the problem of the Richtmyer-Meshkov instability suppression
    Aleshin, AN
    Lazareva, EV
    Sergeev, SV
    Zaitsev, SG
    DOKLADY AKADEMII NAUK, 1998, 363 (02) : 178 - 180
  • [25] RICHTMYER-MESHKOV INSTABILITY IN THE TURBULENT REGIME
    DIMONTE, G
    FRERKING, CE
    SCHNEIDER, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (24) : 4855 - 4858
  • [26] QUANTITATIVE THEORY OF RICHTMYER-MESHKOV INSTABILITY
    GROVE, JW
    HOLMES, R
    SHARP, DH
    YANG, Y
    ZHANG, Q
    PHYSICAL REVIEW LETTERS, 1993, 71 (21) : 3473 - 3476
  • [27] Richtmyer-Meshkov instability of arbitrary shapes
    Mikaelian, KO
    PHYSICS OF FLUIDS, 2005, 17 (03) : 034101 - 1
  • [28] Richtmyer-Meshkov instability with a rippled reshock
    Zhang, Yumeng
    Zhao, Yong
    Ding, Juchun
    Luo, Xisheng
    JOURNAL OF FLUID MECHANICS, 2023, 968
  • [29] Nonlinear evolution of the Richtmyer-Meshkov instability
    Herrmann, Marcus
    Moin, Parviz
    Abarzhi, Snezhana I.
    JOURNAL OF FLUID MECHANICS, 2008, 612 (311-338) : 311 - 338
  • [30] Numerical simulation of Richtmyer-Meshkov instability
    FU Dexun MA Yanwen ZHANG Linbo TIAN BaolinState Key Laboratory of Nonlinear Mechanics Institute of Mechanics Chinese Academy of Sciences Beijing China
    State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004(S1) (S1) : 234 - 244