Multi-step greedy Kaczmarz algorithms with simple random sampling for solving large linear systems

被引:4
|
作者
Zhang, Ke [1 ]
Li, Fu-Ting [1 ]
Jiang, Xiang-Long [1 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Shanghai 201306, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 07期
基金
中国国家自然科学基金;
关键词
Linear systems; Kaczmarz method; Randomized Kaczmarz method; Greedy randomized Kaczmarz method; Simple random sampling; BLOCK KACZMARZ;
D O I
10.1007/s40314-022-02044-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By exploiting the simple random sampling and the greedy technique for capturing large residual entries, we put forth two multi-step greedy Kaczmarz algorithms for solving large linear systems. Both algorithms employ simple random sampling ab initio yet differ in the rules for choosing the working row. The new algorithms are proved to be convergent when the linear system is consistent. Some numerical experiments are carried out to verify the effectiveness of the proposed algorithms.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] On multi-step greedy randomized coordinate descent method for solving large linear least-squares problems
    Tan, Long-Ze
    Guo, Xue-Ping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [32] A Semi-Randomized and Augmented Kaczmarz Method With Simple Random Sampling for Large-Scale Inconsistent Linear Systems
    Li, Shunchang
    Wu, Gang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2025, 32 (01)
  • [33] A Semi-randomized Block Kaczmarz Method with Simple Random Sampling for Large-Scale Consistent Linear Systems
    Wu, Gang
    Chang, Qiao
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [34] A new greedy Kaczmarz algorithm for the solution of very large linear systems
    Zhang, Jian-Jun
    APPLIED MATHEMATICS LETTERS, 2019, 91 : 207 - 212
  • [35] Inertial randomized Kaczmarz algorithms for solving coherent linear systems
    He, Songnian
    Wang, Ziting
    Dong, Qiao-Li
    NUMERICAL ALGORITHMS, 2024, : 133 - 163
  • [36] Solving monotone inclusions with linear multi-step methods
    Pennanen, T
    Svaiter, BF
    MATHEMATICAL PROGRAMMING, 2003, 96 (03) : 469 - 487
  • [37] Solving monotone inclusions with linear multi-step methods
    Teemu Pennanen
    B. F. Svaiter
    Mathematical Programming, 2003, 96 : 469 - 487
  • [38] REDUCED MULTI-STEP ALGORITHMS FOR IDENTIFICATION OF LINEAR PLANTS
    SALYGA, VI
    RUDENKO, OG
    OBRUCHEV, VL
    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1988, 17 (01): : 23 - 32
  • [39] Solving conbinatorial optimization problems with multi-step genetic algorithms
    Watabe, H
    Kawaoka, T
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 813 - 813
  • [40] On sampling Kaczmarz–Motzkin methods for solving large-scale nonlinear systems
    Feiyu Zhang
    Wendi Bao
    Weiguo Li
    Qin Wang
    Computational and Applied Mathematics, 2023, 42