An asymptotic approximation for incomplete Gauss sums

被引:5
|
作者
Paris, RB [1 ]
机构
[1] Univ Abertay, Div Math Sci, Dundee DD1 1HG, Scotland
关键词
incomplete Gauss sum; exponential sums; asymptotics; curlicues;
D O I
10.1016/j.cam.2004.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical incomplete Gauss sum Sigma(j=0)(m-1) exp(2 pi i j(p)/N) (1 <= m < N; p > 1) is studied for large N. An expansion is derived for this sum when p is an integer that holds uniformly for 1 <= nt < M-0, M-0 = (N/p)(1/(p-1)) corresponding to the dominant, primary spiral when the terms are considered as unit vectors in the complex plane. This result is specialised to the quadratic incomplete Gauss sum (p = 2) for which the spirals consist of regular traces dependent on the residue of N (mod 4). This expansion complements earlier work by Lehmer (Mathematika 23 (1976) 125) and extends the more recent results of Evans et al. (J. Math. Anal. Appl. 281 (2003) 454). The above expansion in the primary spiral is also discussed in the case p > 1. Numerical results are given to demonstrate the accuracy of the various approximations. (c) 2004 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:461 / 477
页数:17
相关论文
共 50 条
  • [21] On the uniform distribution of Gauss sums and Jacobi sums
    Katz, NM
    Zheng, ZY
    ANALYTIC NUMBER THEORY, VOL. 2 - PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 139 : 537 - 558
  • [22] GAUSS SUMS AND KLOOSTERMAN SUMS - KLOOSTERMAN SHEAVES
    不详
    ANNALS OF MATHEMATICS STUDIES, 1988, (116): : 46 - +
  • [23] A Note on the Classical Gauss Sums
    Wang, Tingting
    Chen, Guohui
    MATHEMATICS, 2018, 6 (12):
  • [24] Gauss sums and binomial coefficients
    Lee, DH
    Hahn, SG
    JOURNAL OF NUMBER THEORY, 2002, 92 (02) : 257 - 271
  • [25] NMR implementations of Gauss sums
    Jones, Jonathan A.
    PHYSICS LETTERS A, 2008, 372 (36) : 5758 - 5759
  • [26] Gauss Sums on Finite Groups
    Gomi, Yasushi
    Maeda, Taiki
    Shinoda, Ken-ichi
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (01) : 165 - 179
  • [27] An algebraic interpretation of the Gauss sums
    Danas, G
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 76 (04) : 447 - 454
  • [28] The Weil representation and Gauss sums
    Bluher, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 173 (02) : 357 - 373
  • [29] GAUSS DISTRIBUTION FOR SUMS OF DISTANCES
    GURVICH, VA
    KHANIN, KM
    DOKLADY AKADEMII NAUK SSSR, 1991, 316 (02): : 279 - 284
  • [30] On Incomplete Gaussian Sums
    Korolev, M. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 290 (01) : 52 - 62