A parallel Robin-Robin domain decomposition method for H(div)-elliptic problems

被引:0
|
作者
Zeng, Yuping [1 ,2 ]
Chen, Jinru [2 ]
Li, Zhilin [2 ,3 ]
机构
[1] Jiaying Univ, Sch Math, Meizhou 514015, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
65F10; 65N55; 65N30; Robin-Robin domain decomposition method; H(div)-elliptic problems; Raviart-Thomas finite element; convergence analysis; non-overlapping domain decomposition; THOMAS VECTOR-FIELDS; H(DIV); EQUATIONS; CONVERGENCE; ALGORITHM;
D O I
10.1080/00207160.2014.892587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a parallel Robin-Robin domain decomposition method for H(div)-elliptic problems is proposed. The convergence of the method is proved for both the continuous problem and the finite element approximation. Some numerical testes are also presented to demonstrate the effectiveness of the method.
引用
收藏
页码:394 / 410
页数:17
相关论文
共 50 条
  • [31] A parallel iterative domain decomposition algorithm for elliptic problems
    Yang, DQ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (02) : 141 - 151
  • [32] A PARALLEL ITERATIVE DOMAIN DECOMPOSITION ALGORITHM FOR ELLIPTIC PROBLEMS
    Dao-qi Yang (Department of Mathematics
    JournalofComputationalMathematics, 1998, (02) : 141 - 151
  • [33] Numerical Solution of Linear Elliptic Problems with Robin Boundary Conditions by a Least-Squares/Fictitious Domain Method
    Glowinski, Roland
    He, Qiaolin
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 375 - +
  • [34] Quasilinear elliptic and parabolic Robin problems on Lipschitz domains
    Robin Nittka
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 1125 - 1155
  • [35] Deep Domain Decomposition Method: Elliptic Problems
    Li, Wuyang
    Xiang, Xueshuang
    Xu, Yingxiang
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 107, 2020, 107 : 269 - 286
  • [36] Quasilinear elliptic and parabolic Robin problems on Lipschitz domains
    Nittka, Robin
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 1125 - 1155
  • [37] A ROBIN-TYPE DOMAIN DECOMPOSITION METHOD WITH RED-BLACK PARTITION
    Liu, Yongxiang
    Xu, Xuejun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2381 - 2399
  • [38] The Robin Hood method for electrostatic problems
    Lazic, P
    Stefancic, H
    Abraham, H
    Boundary Elements XXVII: Incorporating Electrical Engineering and Electromagnetics, 2005, 39 : 481 - 488
  • [39] A parallel multilevel domain decomposition method for source identification problems governed by elliptic equations
    Deng, Xiaomao
    Liao, Zi-Ju
    Cai, Xiao-Chuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392 (392)
  • [40] Domain decomposition methodology with robin interface matching conditions for solving strongly coupled problems
    Roux, Francois-Xavier
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 2, 2008, 5102 : 311 - 320