A parallel Robin-Robin domain decomposition method for H(div)-elliptic problems

被引:0
|
作者
Zeng, Yuping [1 ,2 ]
Chen, Jinru [2 ]
Li, Zhilin [2 ,3 ]
机构
[1] Jiaying Univ, Sch Math, Meizhou 514015, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
65F10; 65N55; 65N30; Robin-Robin domain decomposition method; H(div)-elliptic problems; Raviart-Thomas finite element; convergence analysis; non-overlapping domain decomposition; THOMAS VECTOR-FIELDS; H(DIV); EQUATIONS; CONVERGENCE; ALGORITHM;
D O I
10.1080/00207160.2014.892587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a parallel Robin-Robin domain decomposition method for H(div)-elliptic problems is proposed. The convergence of the method is proved for both the continuous problem and the finite element approximation. Some numerical testes are also presented to demonstrate the effectiveness of the method.
引用
收藏
页码:394 / 410
页数:17
相关论文
共 50 条
  • [1] A PARALLEL ROBIN-ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES-DARCY SYSTEM
    Chen, Wenbin
    Gunzburger, Max
    Hua, Fei
    Wang, Xiaoming
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) : 1064 - 1084
  • [2] The Monotone Robin-Robin Domain Decomposition Methods for the Elliptic Problems with Stefan-Boltzmann Conditions
    Chen, Wenbin
    Cheng, Jin
    Yamamoto, Masahiro
    Zhang, Weili
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 8 (03) : 642 - 662
  • [3] An optimal Robin-Robin domain decomposition method for Stokes equations
    Na, Xuyang
    Xu, Xuejun
    APPLIED NUMERICAL MATHEMATICS, 2022, 171 : 426 - 441
  • [4] ON THE OPTIMAL CONVERGENCE RATE OF A ROBIN-ROBIN DOMAIN DECOMPOSITION METHOD
    Chen, Wenbin
    Xu, Xuejun
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (04) : 456 - 475
  • [5] A ROBIN-ROBIN NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR AN ELLIPTIC BOUNDARY CONTROL PROBLEM
    Hou, L. S.
    Lee, Jangwoon
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (03) : 443 - 465
  • [6] A multi-timestep Robin-Robin domain decomposition method for time dependent advection-diffusion problems
    Canuto, Claudio
    Lo Giudice, Andrea
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [7] Robin-Robin domain decomposition methods for the Stokes-Darcy coupling
    Discacciati, Marco
    Quarteroni, Alfio
    Valli, Alberto
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1246 - 1268
  • [8] CONVERGENCE ANALYSIS OF THE NONOVERLAPPING ROBIN-ROBIN METHOD FOR NONLINEAR ELLIPTIC EQUATIONS
    ENGSTROM, E. M. I. L.
    HANSEN, E. S. K. I. L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 585 - 605
  • [9] Robin-Robin domain decomposition methods for the dual-porosity-conduit system
    Hou, Jiangyong
    Yan, Wenjing
    Hu, Dan
    He, Zhengkang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (01)
  • [10] Robin-Robin domain decomposition methods for the dual-porosity-conduit system
    Jiangyong Hou
    Wenjing Yan
    Dan Hu
    Zhengkang He
    Advances in Computational Mathematics, 2021, 47