Bayes and robust Bayes predictions in a subfamily of scale parameters under a precautionary loss function

被引:3
|
作者
Golparvar, Leila [1 ]
Karimnezhad, Ali [1 ]
Parsian, Ahmad [1 ]
机构
[1] Univ Tehran, Sch Math Stat & Comp Sci, Tehran 1417614411, Iran
关键词
Bayes prediction; Gamma distribution; Minimax prediction; Precautionary loss function; Robust Bayes prediction; K-RECORD VALUES; INFERENCE;
D O I
10.1080/03610926.2014.915041
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with Bayes, robust Bayes, and minimax predictions in a subfamily of scale parameters under an asymmetric precautionary loss function. In Bayesian statistical inference, the goal is to obtain optimal rules under a specified loss function and an explicit prior distribution over the parameter space. However, in practice, we are not able to specify the prior totally or when a problem must be solved by two statisticians, they may agree on the choice of the prior but not the values of the hyperparameters. A common approach to the prior uncertainty in Bayesian analysis is to choose a class of prior distributions and compute some functional quantity. This is known as Robust Bayesian analysis which provides a way to consider the prior knowledge in terms of a class of priors Gamma for global prevention against bad choices of hyperparameters. Under a scale invariant precautionary loss function, we deal with robust Bayes predictions of Y based on X. We carried out a simulation study and a real data analysis to illustrate the practical utility of the prediction procedure.
引用
收藏
页码:3970 / 3992
页数:23
相关论文
共 50 条
  • [31] Optimal rules and robust Bayes estimation of a Gamma scale parameter
    Golparver, Leila
    Karimnezhad, Ali
    Parsian, Ahmad
    [J]. METRIKA, 2013, 76 (05) : 595 - 622
  • [32] Optimal rules and robust Bayes estimation of a Gamma scale parameter
    Leila Golparver
    Ali Karimnezhad
    Ahmad Parsian
    [J]. Metrika, 2013, 76 : 595 - 622
  • [33] The Bayes Estimators of the Variance and Scale Parameters of the Normal Model With a Known Mean for the Conjugate and Noninformative Priors Under Stein's Loss
    Zhang, Ying-Ying
    Rong, Teng-Zhong
    Li, Man-Man
    [J]. FRONTIERS IN BIG DATA, 2022, 4
  • [34] Bayes estimation of Lomax parameters under different loss functions using Lindley's approximation
    Hasanain, Wafaa S.
    Al-Ghezi, Najm A. Oleiwi
    Soady, Alaa Malik
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 630 - 640
  • [35] Bayes estimation of Lomax parameters under different loss functions using Lindley's approximation
    Hasanain, Wafaa S.
    Al-Ghezi, Najm A. Oleiwi
    Soady, Alaa Malik
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 630 - 640
  • [36] An algorithm for Bayes parameter identification with quadratic asymmetrical loss function
    Kulczycki, Piotr
    Mazgaj, Aleksander
    [J]. CONTROL AND CYBERNETICS, 2005, 34 (04): : 1127 - 1148
  • [37] Convergence rate of empirical Bayes estimation for two-dimensional truncation parameters under linex loss
    Shi, YM
    Gao, SS
    Shi, XL
    [J]. INFORMATION SCIENCES, 2005, 171 (1-3) : 1 - 11
  • [38] Bayes Sequential Estimation for One-Parameter Exponential Family Under Asymmetric LINEX Loss Function
    Hwang, Leng-Cheng
    Lee, Cheng-Hung
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2012, 31 (01): : 3 - 21
  • [39] Bayes Estimation Based on Joint Progressive Type II Censored Data Under LINEX Loss Function
    Doostparast, Mahdi
    Ahmadi, Mohammad Vali
    Ahmadi, Jafar
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (08) : 1865 - 1886
  • [40] The quantization of the attention function under a Bayes information theoretic model
    Wynn, HP
    Sebastiani, P
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 159 - 168