Fluid dynamics of frozen precipitation at the air-water interface

被引:3
|
作者
Vahab, Mehdi [1 ]
Murphy, David [2 ]
Shoele, Kourosh [1 ]
机构
[1] Florida A&M Univ Florida State Univ, Joint Coll Engn, Dept Mech Engn, Tallahassee, FL 32310 USA
[2] Univ S Florida, Dept Mech Engn, Tampa, FL 33620 USA
关键词
air/sea interactions; solidification/melting; VORTEX RINGS; DROPLET IMPACT; ENTRY PROBLEMS; SURFACE; COMPUTATIONS; ENTRAINMENT; SIMULATION; GENERATION; PRESSURE; BEHAVIOR;
D O I
10.1017/jfm.2021.1097
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Precipitation in the forms of snow, hail, and rain plays a critical role in the exchange of mass, momentum and heat at the surfaces of lakes and seas. However, the microphysics of these interactions are not well understood. Motivated by recent observations, we study the physics of the impact of a single frozen canonical particle, such as snow and hail, onto the surface of a liquid bath using a numerical model. The descent, melting, bubble formation and thermal transport characteristics of this system are examined. Three distinct response regimes, namely particle impact, ice melting and vortex ring descent, have been identified and characterized. The melting rate and air content of the snow particle are found to be leading factors affecting the formation of a coherent vortex ring, the vertical descent of melted liquid and the vortex-induced transportation of the released gas bubble to lower depths. It is found that the water temperature can substantially alter the rate of phase change and subsequent flow and thermal transport, while the particle temperature has minimal effect on the process. Finally, the effects of the Reynolds, Weber and Stefan numbers are examined and it is shown that the Reynolds number modifies the strength of the vortex ring and induces the most significant effect on the flow dynamics of the snow particle. Also, the change of Weber number primarily alters the initial phases of snow-bath interaction while modifying the Stefan number of the snow particle essentially determines the system response in its later stages.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Polymer Behavior at the Air-Water Interface
    Ligia Gargallo
    MRS Bulletin, 2010, 35 : 615 - 622
  • [42] Chiral recognition at the air-water interface
    Ariga, Katsuhiko
    Michinobu, Tsuyoshi
    Nakanishi, Takashi
    Hill, Jonathan P.
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2008, 13 (1-2) : 23 - 30
  • [43] DNA hybridization at the air-water interface
    Ebara, Y
    Mizutani, K
    Okahata, Y
    LANGMUIR, 2000, 16 (06) : 2416 - 2418
  • [44] Crystallization of a polyphosphoester at the air-water interface
    Hasan, Nazmul
    Schwieger, Christian
    Tee, Hisaschi T.
    Wurm, Frederik R.
    Busse, Karsten
    Kressler, Joerg
    EUROPEAN POLYMER JOURNAL, 2018, 101 : 350 - 357
  • [45] Hydroxide anion at the air-water interface
    Mundy, Christopher J.
    Kuo, I-Feng W.
    Tuckerman, Mark E.
    Lee, Hee-Seung
    Tobias, Douglas J.
    CHEMICAL PHYSICS LETTERS, 2009, 481 (1-3) : 2 - 8
  • [46] POLYDIMETHYLSILOXANE MONOLAYERS AT AN AIR-WATER INTERFACE
    KAKIHARA, Y
    HIMMELBL.DM
    SCHECHTE.RS
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1969, 30 (02) : 200 - &
  • [47] MONOMOLECULAR FILMS AT AIR-WATER INTERFACE
    CADENHEA.DA
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1968, 60 (05): : 6 - &
  • [48] Chemistry at the interface: Chemical transformations at the air-water interface
    Ehrenhauser, Franz S.
    Heath, Aubrey A.
    Liyana-Arachchi, Thilanga P.
    Wornat, Mary J.
    Hung, Francisco R.
    Herckes, Pierre R.
    Valsaraj, Kalliat T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [49] Revisiting the Thickness of the Air-Water Interface from Two Extremes of Interface Hydrogen Bond Dynamics
    Huang, Gang
    Huang, Jie
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (20) : 9107 - 9115
  • [50] Modeling of plasma dynamics at the air-water interface: Application to laser shock processing
    Mazhukin, VI
    Nossov, VV
    Smurov, I
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (02) : 607 - 618