A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence

被引:26
|
作者
Amoroso, Nicola [1 ,2 ]
Pomarico, Domenico [3 ]
Fanizzi, Annarita [3 ]
Didonna, Vittorio [3 ]
Giotta, Francesco [4 ]
La Forgia, Daniele [5 ]
Latorre, Agnese [4 ]
Monaco, Alfonso [1 ,6 ]
Pantaleo, Ester [6 ]
Petruzzellis, Nicole [3 ]
Tamborra, Pasquale [3 ]
Zito, Alfredo [7 ]
Lorusso, Vito [4 ]
Bellotti, Roberto [1 ,6 ]
Massafra, Raffaella [3 ]
机构
[1] INFN, Sez Bari, Via G Amendola 173, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Farm Sci Farmaco, I-70126 Bari, Italy
[3] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Fis Sanit, Viale Orazio Flacco 65, I-70124 Bari, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Oncol Med, Viale Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiol Senol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[6] Univ Bari, Dipartimento Fis, Via G Amendola 173, I-70126 Bari, Italy
[7] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Anat Patol, Viale Orazio Flacco 65, I-70124 Bari, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
relevant features; cluster analysis; molecular subtype; breast cancer; explainable artificial intelligence; BIG DATA;
D O I
10.3390/app11114881
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years personalized medicine reached an increasing importance, especially in the design of oncological therapies. In particular, the development of patients' profiling strategies suggests the possibility of promising rewards. In this work, we present an explainable artificial intelligence (XAI) framework based on an adaptive dimensional reduction which (i) outlines the most important clinical features for oncological patients' profiling and (ii), based on these features, determines the profile, i.e., the cluster a patient belongs to. For these purposes, we collected a cohort of 267 breast cancer patients. The adopted dimensional reduction method determines the relevant subspace where distances among patients are used by a hierarchical clustering procedure to identify the corresponding optimal categories. Our results demonstrate how the molecular subtype is the most important feature for clustering. Then, we assessed the robustness of current therapies and guidelines; our findings show a striking correspondence between available patients' profiles determined in an unsupervised way and either molecular subtypes or therapies chosen according to guidelines, which guarantees the interpretability characterizing explainable approaches to machine learning techniques. Accordingly, our work suggests the possibility to design data-driven therapies to emphasize the differences observed among the patients.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Explainable artificial intelligence in breast cancer detection and risk prediction: A systematic scoping review
    Ghasemi, Amirehsan
    Hashtarkhani, Soheil
    Schwartz, David L.
    Shaban-Nejad, Arash
    CANCER INNOVATION, 2024, 3 (05):
  • [12] Explainable artificial intelligence
    Wickramasinghe, Chathurika S.
    Marino, Daniel
    Amarasinghe, Kasun
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [13] Special issue on "Towards robust explainable and interpretable artificial intelligence"
    Tomasiello, Stefania
    Feng, Feng
    Zhao, Yichuan
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (1) : 417 - 418
  • [14] Towards Interactive and Social Explainable Artificial Intelligence for Digital History
    Albrecht, Richard
    Hulstijn, Joris
    Tchappi, Igor
    Najjar, Amro
    EXPLAINABLE AND TRANSPARENT AI AND MULTI-AGENT SYSTEMS, EXTRAAMAS 2024, 2024, 14847 : 189 - 202
  • [15] Towards Semantic Integration for Explainable Artificial Intelligence in the Biomedical Domain
    Pesquita, Catia
    HEALTHINF: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL. 5: HEALTHINF, 2021, : 747 - 753
  • [16] Special issue on “Towards robust explainable and interpretable artificial intelligence”
    Stefania Tomasiello
    Feng Feng
    Yichuan Zhao
    Evolutionary Intelligence, 2024, 17 : 417 - 418
  • [17] Explainable Artificial Intelligence for Breast Tumour Classification: Helpful or Harmful
    Rafferty, Amy
    Nenutil, Rudolf
    Rajan, Ajitha
    INTERPRETABILITY OF MACHINE INTELLIGENCE IN MEDICAL IMAGE COMPUTING, IMIMIC 2022, 2022, 13611 : 104 - 123
  • [18] Towards Breast Cancer Response Prediction using Artificial Intelligence and Radiomics
    Amkrane, Yassine
    El Adoui, Mohammed
    Benjelloun, Mohammed
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 253 - 257
  • [19] Overview of trials on artificial intelligence algorithms in breast cancer screening - A roadmap for international evaluation and implementation
    van Nijnatten, T. J. A.
    Payne, N. R.
    Hickman, S. E.
    Ashrafian, H.
    Gilbert, F. J.
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 167
  • [20] Breast cancer patients' communication needs and wishes for an explainable Artificial Intelligence prediction model for lymphedema
    Roumen, C.
    Rainbird, J.
    Verhoeven, K.
    Bologna, G.
    Bombezin-Domino, A.
    Rattay, T.
    van Soest, J.
    Dekker, A.
    Joore, M.
    Pannison, A.
    Perotti, A.
    Ramaekers, B. L. T.
    Rivera, S.
    Romita, A.
    Traverso, A.
    Webb, A. J.
    Koutsopoulos, I.
    Talbot, C. J.
    Cortellessa, G.
    Fracasso, F.
    EUROPEAN JOURNAL OF CANCER, 2024, 200 : 95 - 95