A Roadmap towards Breast Cancer Therapies Supported by Explainable Artificial Intelligence

被引:26
|
作者
Amoroso, Nicola [1 ,2 ]
Pomarico, Domenico [3 ]
Fanizzi, Annarita [3 ]
Didonna, Vittorio [3 ]
Giotta, Francesco [4 ]
La Forgia, Daniele [5 ]
Latorre, Agnese [4 ]
Monaco, Alfonso [1 ,6 ]
Pantaleo, Ester [6 ]
Petruzzellis, Nicole [3 ]
Tamborra, Pasquale [3 ]
Zito, Alfredo [7 ]
Lorusso, Vito [4 ]
Bellotti, Roberto [1 ,6 ]
Massafra, Raffaella [3 ]
机构
[1] INFN, Sez Bari, Via G Amendola 173, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Farm Sci Farmaco, I-70126 Bari, Italy
[3] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Fis Sanit, Viale Orazio Flacco 65, I-70124 Bari, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Oncol Med, Viale Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiol Senol, Viale Orazio Flacco 65, I-70124 Bari, Italy
[6] Univ Bari, Dipartimento Fis, Via G Amendola 173, I-70126 Bari, Italy
[7] IRCCS Ist Tumori Giovanni Paolo II, Unita Operat Complessa Anat Patol, Viale Orazio Flacco 65, I-70124 Bari, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
relevant features; cluster analysis; molecular subtype; breast cancer; explainable artificial intelligence; BIG DATA;
D O I
10.3390/app11114881
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years personalized medicine reached an increasing importance, especially in the design of oncological therapies. In particular, the development of patients' profiling strategies suggests the possibility of promising rewards. In this work, we present an explainable artificial intelligence (XAI) framework based on an adaptive dimensional reduction which (i) outlines the most important clinical features for oncological patients' profiling and (ii), based on these features, determines the profile, i.e., the cluster a patient belongs to. For these purposes, we collected a cohort of 267 breast cancer patients. The adopted dimensional reduction method determines the relevant subspace where distances among patients are used by a hierarchical clustering procedure to identify the corresponding optimal categories. Our results demonstrate how the molecular subtype is the most important feature for clustering. Then, we assessed the robustness of current therapies and guidelines; our findings show a striking correspondence between available patients' profiles determined in an unsupervised way and either molecular subtypes or therapies chosen according to guidelines, which guarantees the interpretability characterizing explainable approaches to machine learning techniques. Accordingly, our work suggests the possibility to design data-driven therapies to emphasize the differences observed among the patients.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An Explainable Artificial Intelligence Model for the Classification of Breast Cancer
    Khater, Tarek
    Hussain, Abir
    Bendardaf, Riyad
    Talaat, Iman M.
    Tawfik, Hissam
    Ansari, Sam
    Mahmoud, Soliman
    IEEE ACCESS, 2025, 13 : 5618 - 5633
  • [2] Deep learning based computer aided diagnosis (CAD) tool supported by explainable artificial intelligence for breast cancer explorationDeep learning based computer aided diagnosis (CAD) tool supported by explainable artificial intelligence for breast cancer explorationMarwa Naas
    Marwa Naas
    Hiba Mzoughi
    Ines Njeh
    Mohamed Ben Slima
    Applied Intelligence, 2025, 55 (7)
  • [3] A Roadmap of Explainable Artificial Intelligence: Explain to Whom, When, What and How?
    Wang, Ziming
    Huang, Changwu
    Yao, Xin
    ACM TRANSACTIONS ON AUTONOMOUS AND ADAPTIVE SYSTEMS, 2024, 19 (04)
  • [4] Towards a Framework for Interdisciplinary Studies in Explainable Artificial Intelligence
    Ziethmann, Paula
    Stieler, Fabian
    Pfrommer, Raphael
    Schloegl-Flier, Kerstin
    Bauer, Bernhard
    ARTIFICIAL INTELLIGENCE IN HCI, PT I, AI-HCI 2024, 2024, 14734 : 316 - 333
  • [5] Towards Evaluation of Explainable Artificial Intelligence in Streaming Data
    Mozolewski, Maciej
    Bobek, Szymon
    Ribeiro, Rita P.
    Nalepa, Grzegorz J.
    Gama, Joao
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2024, PT IV, 2024, 2156 : 145 - 168
  • [6] Efficient breast cancer detection using neural networks and explainable artificial intelligence
    Tamilarasi Kathirvel Murugan
    Pritikaa Karthikeyan
    Pavithra Sekar
    Neural Computing and Applications, 2025, 37 (5) : 3759 - 3776
  • [7] Towards explainable artificial intelligence for the leukemia subtype recognition
    Ochoa-Montiel, Rocio
    Olague, Gustavo
    Sossa, Humberto
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,
  • [8] Explainable Artificial Intelligence in Quantifying Breast Cancer Factors: Saudi Arabia Context
    Alelyani, Turki
    Alshammari, Maha M.
    Almuhanna, Afnan
    Asan, Onur
    HEALTHCARE, 2024, 12 (10)
  • [9] Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
    Massafra, Raffaella
    Fanizzi, Annarita
    Amoroso, Nicola
    Bove, Samantha
    Comes, Maria Colomba
    Pomarico, Domenico
    Didonna, Vittorio
    Diotaiuti, Sergio
    Galati, Luisa
    Giotta, Francesco
    La Forgia, Daniele
    Latorre, Agnese
    Lombardi, Angela
    Nardone, Annalisa
    Pastena, Maria Irene
    Ressa, Cosmo Maurizio
    Rinaldi, Lucia
    Tamborra, Pasquale
    Zito, Alfredo
    Paradiso, Angelo Virgilio
    Bellotti, Roberto
    Lorusso, Vito
    FRONTIERS IN MEDICINE, 2023, 10
  • [10] Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach
    Lamy, Jean-Baptiste
    Sekar, Boomadevi
    Guezennec, Gilles
    Bouaud, Jacques
    Seroussi, Brigitte
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 94 : 42 - 53