Nuclear energy density optimization

被引:456
|
作者
Kortelainen, M. [1 ,2 ]
Lesinski, T. [1 ,2 ]
More, J. [3 ]
Nazarewicz, W. [1 ,2 ,4 ]
Sarich, J. [3 ]
Schunck, N. [1 ,2 ]
Stoitsov, M. V. [1 ,2 ,5 ]
Wild, S. [3 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA
[3] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[4] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
来源
PHYSICAL REVIEW C | 2010年 / 82卷 / 02期
关键词
HARMONIC-OSCILLATOR BASIS; GROUND-STATE PROPERTIES; HARTREE-FOCK EQUATIONS; ATOMIC MASS EVALUATION; SKYRME INTERACTION; EFFECTIVE FORCES; NEUTRON-RICH; PARAMETRIZATION; MATTER;
D O I
10.1103/PhysRevC.82.024313
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDF0 results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Spin constraints on nuclear energy density functionals
    Robledo, L. M.
    Bernard, R. N.
    Bertsch, G. F.
    PHYSICAL REVIEW C, 2014, 89 (02):
  • [22] Nuclear clustering in the Energy Density Functional Approach
    Ebran, J. -P.
    Khan, E.
    Niksic, T.
    Vretenar, D.
    3RD INTERNATIONAL WORKSHOP ON STATE OF THE ART IN NUCLEAR CLUSTER PHYSICS, 2014, 569
  • [23] Symmetry energy in nuclear density functional theory
    Nazarewicz, W.
    Reinhard, P. -G.
    Satula, W.
    Vretenar, D.
    EUROPEAN PHYSICAL JOURNAL A, 2014, 50 (02): : 1 - 13
  • [24] Probing the density content of the nuclear symmetry energy
    Agrawal, B. K.
    De, J. N.
    Samaddar, S. K.
    PRAMANA-JOURNAL OF PHYSICS, 2014, 82 (05): : 823 - 830
  • [25] Decoding the density dependence of the nuclear symmetry energy
    Lynch, W. G.
    Tsang, M. B.
    PHYSICS LETTERS B, 2022, 830
  • [26] ENERGY-DENSITY RELATION FOR NUCLEAR MATTER
    MOHLING, F
    PHYSICAL REVIEW, 1962, 128 (03): : 1365 - &
  • [27] Nuclear clustering in the Energy Density Functional Approach
    Ebran, J. -P.
    Khan, E.
    Niksic, T.
    Vretenar, D.
    NUCLEAR STRUCTURE AND DYNAMICS '15, 2015, 1681
  • [28] ENERGY DENSITY FORMALISM AND SEMICLASSICAL NUCLEAR PROPERTIES
    BEHERA, B
    ROUTRAY, TR
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1994, 20 (10) : 1615 - 1632
  • [29] Towards the universal nuclear energy density functional
    Stoitsov, M.
    More, J.
    Nazarewicz, W.
    Pei, J. C.
    Sarich, J.
    Schunck, N.
    Staszczak, A.
    Wild, S.
    SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
  • [30] Building a universal nuclear energy density functional
    Bertsch, G. F.
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78