Nuclear energy density optimization

被引:456
|
作者
Kortelainen, M. [1 ,2 ]
Lesinski, T. [1 ,2 ]
More, J. [3 ]
Nazarewicz, W. [1 ,2 ,4 ]
Sarich, J. [3 ]
Schunck, N. [1 ,2 ]
Stoitsov, M. V. [1 ,2 ,5 ]
Wild, S. [3 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA
[3] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[4] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
来源
PHYSICAL REVIEW C | 2010年 / 82卷 / 02期
关键词
HARMONIC-OSCILLATOR BASIS; GROUND-STATE PROPERTIES; HARTREE-FOCK EQUATIONS; ATOMIC MASS EVALUATION; SKYRME INTERACTION; EFFECTIVE FORCES; NEUTRON-RICH; PARAMETRIZATION; MATTER;
D O I
10.1103/PhysRevC.82.024313
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDF0 results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Nuclear energy density optimization: Shell structure
    Kortelainen, M.
    McDonnell, J.
    Nazarewicz, W.
    Olsen, E.
    Reinhard, P. -G.
    Sarich, J.
    Schunck, N.
    Wild, S. M.
    Davesne, D.
    Erler, J.
    Pastore, A.
    PHYSICAL REVIEW C, 2014, 89 (05):
  • [2] Nuclear energy density optimization: Large deformations
    Kortelainen, M.
    McDonnell, J.
    Nazarewicz, W.
    Reinhard, P-G
    Sarich, J.
    Schunck, N.
    Stoitsov, M. V.
    Wild, S. M.
    PHYSICAL REVIEW C, 2012, 85 (02):
  • [3] Nuclear energy density functional and the nuclear a decay
    Lim, Yeunhwan
    Oh, Yongseok
    PHYSICAL REVIEW C, 2017, 95 (03)
  • [4] Nuclear Energy Density Functional and the Nuclear α Decay
    Lim Y.
    Oh Y.
    Physics of Particles and Nuclei Letters, 2018, 15 (4) : 425 - 430
  • [5] Density dependence of the nuclear energy-density functional
    Papakonstantinou, Panagiota
    Park, Tae-Sun
    Lim, Yeunhwan
    Hyun, Chang Ho
    PHYSICAL REVIEW C, 2018, 97 (01)
  • [6] ENERGY DEPENDENCE OF NUCLEAR LEVEL DENSITY
    MARUYAMA, M
    TSUKADA, K
    TANAKA, S
    TOMITA, Y
    YAMANOUC.Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1968, S 24 : 373 - &
  • [7] Instabilities in the nuclear energy density functional
    Kortelainen, Markus
    Lesinski, Thomas
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2010, 37 (06)
  • [8] NUCLEAR ENERGY DENSITY FUNCTIONAL FOR KIDS
    Gil, Hana
    Papakonstantinou, Panagiota
    Hyun, Chang Ho
    Park, Tae-Sun
    Oh, Yongseok
    ACTA PHYSICA POLONICA B, 2017, 48 (03): : 305 - 308
  • [9] Relativistic Nuclear Energy Density Functionals
    Vretenar, Dario
    Niksic, Tamara
    Ring, Peter
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2012, (196): : 137 - 144
  • [10] Density dependence of nuclear symmetry energy
    Behera, B.
    Routray, T. R.
    Tripathy, S. K.
    MODERN PHYSICS LETTERS A, 2016, 31 (34)