Kinematic Frenkel gap biexciton in one-dimensional structures

被引:0
|
作者
Agranovich, VM [1 ]
Dubovsky, OA [1 ]
Kamchatnov, AM [1 ]
机构
[1] Russian Acad Sci, Inst Spect, Troitsk 142092, Moscow Reg, Russia
基金
俄罗斯基础研究基金会;
关键词
excitation spectra calculations; many-body and quasiparticle theories;
D O I
10.1016/S0379-6779(00)00470-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the role of kinematical exciton-exciton interaction in two-particle spectra of Frenkel excitons induced by their paulion nature, We demonstrate that, even if the dynamical exciton-exciton interaction is absent, in the 1D crystals with several molecules in the unit cell, the bound states of two excitons may be formed within a gap between the bands of two-particle states. Numerical analysis of dispersion relation for such gap biexcitons shows that these type of biexcitons have band's width small compared with the band's width of free two exciton states. We can expect that these states can give essential contribution into the resonant part of the nonlinear optical polarizability and two-photon absorption of 1D molecular aggregates. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:293 / 295
页数:3
相关论文
共 50 条
  • [1] Gap kinematic Frenkel biexciton
    Dubovskii, OA
    PHYSICS OF THE SOLID STATE, 2000, 42 (03) : 450 - 455
  • [2] Gap kinematic Frenkel biexciton
    O. A. Dubovskii
    Physics of the Solid State, 2000, 42 : 450 - 455
  • [3] BIEXCITON ON A ONE-DIMENSIONAL LATTICE
    ISHIDA, K
    AOKI, H
    PHYSICAL REVIEW B, 1995, 52 (12): : 8980 - 8991
  • [4] Biexciton in one-dimensional Mott insulators
    Miyamoto, T.
    Kakizaki, T.
    Terashige, T.
    Hata, D.
    Yamakawa, H.
    Morimoto, T.
    Takamura, N.
    Yada, H.
    Takahashi, Y.
    Hasegawa, T.
    Matsuzaki, H.
    Tohyama, T.
    Okamoto, H.
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [5] Biexciton in one-dimensional Mott insulators
    T. Miyamoto
    T. Kakizaki
    T. Terashige
    D. Hata
    H. Yamakawa
    T. Morimoto
    N. Takamura
    H. Yada
    Y. Takahashi
    T. Hasegawa
    H. Matsuzaki
    T. Tohyama
    H. Okamoto
    Communications Physics, 2
  • [6] Gap solitons in almost periodic one-dimensional structures
    Alexander Pankov
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1963 - 1984
  • [8] One-dimensional periodic structures with complete spectral gap
    Shadrivov, IV
    Sukhorukov, AA
    Kivshar, YS
    PHOTONICS: DESIGN, TECHNOLOGY, AND PACKAGING II, 2006, 6038
  • [9] Kinematic quasi-vacancy Frenkel biexciton in a Davydov multiplet
    O. A. Dubovskii
    Physics of the Solid State, 1999, 41 : 379 - 383
  • [10] Kinematic quasi-vacancy Frenkel biexciton in a Davydov multiplet
    Dubovskii, OA
    PHYSICS OF THE SOLID STATE, 1999, 41 (03) : 379 - 383