Construction of approximate periodic solutions to a modified van der Pol oscillator

被引:7
|
作者
Marinca, V. [1 ]
Draganescu, G. E. [1 ]
机构
[1] Polytech Univ Timisoara, Dept Mech & Vibrat, Timisoara 300222, Romania
关键词
Iteration procedure; Approximate method; Modified van der Pol equation; Periodic solution; Nonlinear oscillation; ITERATION PERTURBATION METHOD; NONLINEAR OSCILLATORS; LIMIT-CYCLE;
D O I
10.1016/j.nonrwa.2010.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new iteration scheme is proposed and applied for the modified van der Pol oscillator. A simple and effective iteration procedure to search for the periodic solutions of the equation is given. This procedure is a powerful tool for the determination of the approximate frequencies and periodic solutions of the nonlinear differential equations. The solutions obtained using the present iteration procedure are in good agreement with the numerical integration obtained by a fourth order Runge-Kutta method, which shows the applicability of the procedure. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4355 / 4362
页数:8
相关论文
共 50 条
  • [31] A novel bursting oscillation and its transitions in a modified Bonhoeffer–van der Pol oscillator with weak periodic excitation
    Xindong Ma
    Wentao Hou
    Xiaofang Zhang
    Xiujing Han
    Qinsheng Bi
    The European Physical Journal Plus, 136
  • [32] The coexistence of periodic, almost-periodic and chaotic attractors in the van der Pol Duffing oscillator
    SzemplinskaStupnicka, W
    Rudowski, J
    JOURNAL OF SOUND AND VIBRATION, 1997, 199 (02) : 165 - 175
  • [33] ASYNCHRONOUS QUENCHING OF VAN DER POL OSCILLATOR
    DEWAN, EM
    LASHINSKY, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (02) : 212 - +
  • [34] APPROXIMATE SYMMETRIES OF A VAN DER POL EQUATION
    BAIKOV, VA
    DIFFERENTIAL EQUATIONS, 1994, 30 (10) : 1684 - 1686
  • [35] Complex order van der Pol oscillator
    Carla M. A. Pinto
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2011, 65 : 247 - 254
  • [36] A model of the distributed Van der Pol oscillator
    Kambulov, VF
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1121 - 1124
  • [37] Complex order van der Pol oscillator
    Pinto, Carla M. A.
    Tenreiro Machado, J. A.
    NONLINEAR DYNAMICS, 2011, 65 (03) : 247 - 254
  • [38] Potential landscape of the Van der Pol oscillator
    Lu, Qiang
    Yue, Chao
    Zhang, Zhaochen
    2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, : 51 - 54
  • [40] JUMP PHENOMENON IN A VAN DER POL OSCILLATOR
    LEPOURHIET, A
    PAQUET, JG
    AUTOMATICA, 1971, 7 (04) : 481 - +