Evolutionary computing for topology optimization of type-2 fuzzy systems

被引:10
|
作者
Castillo, Oscar [1 ]
Martinez, Alma Isabel [1 ]
Martinez, Alma Cristina [1 ]
机构
[1] Tijuana Inst Technol, Div Grad Studies, Mexico City, DF, Mexico
关键词
D O I
10.1007/978-3-540-72432-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe in this paper the use of hierarchical genetic algorithms for fuzzy system optimization in intelligent control. In particular, we consider the problem of optimizing the number of rules and membership functions using an evolutionary approach. The hierarchical genetic algorithm enables the optimization of the fuzzy system design for a particular application. We illustrate the approach with the case of intelligent control in a medical application. Simulation results for this application show that we are able to find an optimal set of rules and membership functions for the fuzzy system.
引用
收藏
页码:63 / +
页数:2
相关论文
共 50 条
  • [41] Advances in type-2 fuzzy sets and systems
    Mendel, Jerry M.
    [J]. INFORMATION SCIENCES, 2007, 177 (01) : 84 - 110
  • [42] Interval type-2 fuzzy logic systems
    Liang, QL
    Mendel, JM
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 328 - 333
  • [43] Type-2 fuzzy sets and systems: An overview
    Mendel, Jerry M.
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2007, 2 (01) : 20 - 29
  • [44] Stability Analysis of Type-2 Fuzzy Systems
    Begian, Mohammad Biglar
    Melek, William W.
    Mendel, Jerry M.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 947 - +
  • [45] Modified Symbiotic Evolutionary Learning for Type-2 Fuzzy System
    Balaji, Parasumanna Gokulan
    Srinivasan, Dipti
    [J]. IEEE SYSTEMS JOURNAL, 2014, 8 (02): : 353 - 362
  • [46] An evolutionary tuning technique for type-2 fuzzy logic controller
    Mohammadi, S. M. A.
    Gharaveisi, A. A.
    Mashinchi, M.
    Vaezi-Nejad, S. M.
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2011, 33 (02) : 223 - 245
  • [47] A novel binomial-based fuzzy type-2 approach for topology and size optimization of skeletal structures
    Mortazavi, Ali
    [J]. Advances in Engineering Software, 2025, 199
  • [48] A type-2 fuzzy embedded agent for ubiquitous computing environments
    Doctor, F
    Hagras, H
    Callaghan, V
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 1105 - 1110
  • [49] Nonlinear Dynamical System Identification Based on Evolutionary Interval Type-2 TSK Fuzzy Systems
    Zhang Jianhua
    Chen Hongjie
    Wang Rubin
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2900 - 2905
  • [50] A Fast Method for Computing the Centroid of a Type-2 Fuzzy Set
    Wu, Hsin-Jung
    Su, Yao-Lung
    Lee, Shie-Jue
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (03): : 764 - 777