Reusable fuzzy extractor from the decisional Diffie-Hellman assumption

被引:23
|
作者
Wen, Yunhua [1 ,2 ]
Liu, Shengli [1 ,2 ,3 ]
Han, Shuai [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[2] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
[3] Westone Cryptol Res Ctr, Beijing 100070, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy extractor; Reusability; Standard model; DDH assumption; PHYSICAL UNCLONABLE FUNCTIONS; PUBLIC-KEY CRYPTOSYSTEM; GENERATE STRONG KEYS; PRIVACY AMPLIFICATION; QUANTUM INFORMATION; NOISY DATA; AUTHENTICATION; IDENTIFICATION; RECOGNITION; BIOMETRICS;
D O I
10.1007/s10623-018-0459-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fuzzy extractors convert noisy non-uniform readings of secret sources into reliably reproducible, uniformly random strings, which in turn are used in cryptographic applications. Reusable fuzzy extractor allows multiple uses of the same secret source. In this paper, we construct the first strongly reusable fuzzy extractor which tolerates linear fraction of errors, with security tightly reduced to the decisional Diffie-Hellman (DDH) assumption in the standard model. Our construction is simple and efficient. Only two group operations and an evaluation of a hash function are added compared with the traditional construction of non-reusable fuzzy extractors.
引用
收藏
页码:2495 / 2512
页数:18
相关论文
共 50 条
  • [41] On-The-Fly Diffie-Hellman for IoT
    Diaz Arancibia, Jaime
    Ferrari Smith, Vicente
    Lopez Fenner, Julio
    [J]. 2019 38TH INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2019,
  • [42] Short exponent Diffie-Hellman problems
    Koshiba, T
    Kurosawa, K
    [J]. PUBLIC KEY CRYPTOGRAPHY - PKC 2004, PROCEEDINGS, 2004, 2947 : 173 - 186
  • [43] An Algebraic Framework for Diffie-Hellman Assumptions
    Escala, Alex
    Herold, Gottfried
    Kiltz, Eike
    Rafols, Carla
    Villar, Jorge
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2013, PT II, 2013, 8043 : 129 - 147
  • [44] TMQV: A Strongly eCK-Secure Diffie-Hellman Protocol without Gap Assumption
    Pan, Jiaxin
    Wang, Libin
    [J]. PROVABLE SECURITY, 2011, 6980 : 380 - 388
  • [45] Optimal Randomness Extraction from a Diffie-Hellman Element
    Chevalier, Celine
    Fouque, Pierre-Alain
    Pointcheval, David
    Zimmer, Sebastien
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009, 2009, 5479 : 572 - 589
  • [46] A Polynomial Representation of the Diffie-Hellman Mapping
    Wilfried Meidl
    Arne Winterhof
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2002, 13 : 313 - 318
  • [47] The twin Diffie-Hellman problem and applications
    Cash, David
    Kiltz, Eike
    Shopup, Victor
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2008, 2008, 4965 : 127 - +
  • [48] The Twin Diffie-Hellman Problem and Applications
    Cash, David
    Kiltz, Eike
    Shoup, Victor
    [J]. JOURNAL OF CRYPTOLOGY, 2009, 22 (04) : 470 - 504
  • [49] Secure bilinear Diffie-Hellman bits
    Galbraith, SD
    Hopkins, HJ
    Shparlinski, IE
    [J]. INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2004, 3108 : 370 - 378
  • [50] An Algebraic Framework for Diffie-Hellman Assumptions
    Escala, Alex
    Herold, Gottfried
    Kiltz, Eike
    Rafols, Carla
    Villar, Jorge
    [J]. JOURNAL OF CRYPTOLOGY, 2017, 30 (01) : 242 - 288