FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks

被引:20
|
作者
Rahman, Md Khaledur [1 ]
Sujon, Majedul Hague [1 ]
Azad, Ariful [1 ]
机构
[1] Indiana Univ, Luddy Sch Informat Comp & Engn, Bloomington, IN 47405 USA
关键词
message passing; GNN; graph embedding;
D O I
10.1109/IPDPS49936.2021.00034
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a fused matrix multiplication kernel that unifies sampled dense-dense matrix multiplication and sparse-dense matrix multiplication under a single operation called FusedMM. By using user-defined functions, FusedMM can capture almost all computational patterns needed by popular graph embedding and GNN approaches. FusedMM is an order of magnitude faster than its equivalent kernels in Deep Graph Library. The superior performance of FusedMM comes from the low-level vectorized kernels, a suitable load balancing scheme and an efficient utilization of the memory bandwidth. FusedMM can tune its performance using a code generator and perform equally well on Intel, AMD and ARM processors. FusedMM speeds up an end-to-end graph embedding algorithm by up to 28x on different processors. The source code is available at https://github.com/HipGraph/FusedMM.
引用
收藏
页码:256 / 266
页数:11
相关论文
共 50 条
  • [31] Shared Embedding Based Neural Networks for Knowledge Graph Completion
    Guan, Saiping
    Jin, Xiaolong
    Wang, Yuanzhuo
    Cheng, Xueqi
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 247 - 256
  • [32] Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
    Ma, Yuzhou
    Zhang, Han
    Jin, Chen
    Kang, Chuanze
    FRONTIERS IN GENETICS, 2023, 14
  • [33] A dual graph neural networks model using sequence embedding as graph nodes for vulnerability detection
    Ling, Miaogui
    Tang, Mingwei
    Bian, Deng
    Lv, Shixuan
    Tang, Qi
    INFORMATION AND SOFTWARE TECHNOLOGY, 2025, 177
  • [34] Graph Neural Networks for Graph Drawing
    Tiezzi, Matteo
    Ciravegna, Gabriele
    Gori, Marco
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4668 - 4681
  • [35] Learning Kernel-Based Embeddings in Graph Neural Networks
    Navarin, Nicole
    Dinh Van Tran
    Sperduti, Alessandro
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1387 - 1394
  • [36] Graph Rewriting for Graph Neural Networks
    Machowczyk, Adam
    Heckel, Reiko
    GRAPH TRANSFORMATION, ICGT 2023, 2023, 13961 : 292 - 301
  • [37] Node classification using kernel propagation in graph neural networks
    Prakash, Sakthi Kumar Arul
    Tucker, Conrad S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [38] A unified framework for convolution-based graph neural networks
    Pan, Xuran
    Han, Xiaoyan
    Wang, Chaofei
    Li, Zhuo
    Song, Shiji
    Huang, Gao
    Wu, Cheng
    PATTERN RECOGNITION, 2024, 155
  • [39] Graph Mining with Graph Neural Networks
    Jin, Wei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1119 - 1120
  • [40] Graph Clustering with Graph Neural Networks
    Tsitsulin, Anton
    Palowitch, John
    Perozzi, Bryan
    Mueller, Emmanuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24