Elastic strings in solids: Discrete kink diffusion

被引:15
|
作者
Cattuto, C [1 ]
Costantini, C
Guidi, T
Marchesoni, F
机构
[1] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[2] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
[3] Univ Camerino, Ist Nazl Fis Mat, I-62032 Camerino, Italy
来源
PHYSICAL REVIEW B | 2001年 / 63卷 / 09期
关键词
D O I
10.1103/PhysRevB.63.094308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The diffusive dynamics of a single discrete phi (4) soliton coupled to an overdamped heat bath is analyzed in detail. The Langevin equation for the soliton center of mass is derived in general form and compared with the outcome of extensive numerical simulation. The effective mass of the moving soliton must he renormalized dynamically for lattice constants of the order of its size or smaller. The corresponding mobility curve and diffusion coefficient are determined numerically: At variance with the earlier literature, discreteness effects persist even at high temperature and in the presence of strong drives.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] TRANSITION-STATE THEORY FOR KINK DIFFUSION IN DISCRETE NONLINEAR-SYSTEMS
    MUNAKATA, T
    IGARASHI, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (07) : 2394 - 2399
  • [12] DISCRETE STRINGS AND DETERMINISTIC CELLULAR STRINGS
    RUSSO, JG
    NUCLEAR PHYSICS B, 1993, 406 (1-2) : 107 - 144
  • [13] DIFFUSION OF SELF-EQUILIBRATING END LOADS IN ELASTIC SOLIDS
    DURBAN, D
    STRONGE, WJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (02): : 492 - 495
  • [14] DISCRETE THEORY OF KINK DIFFUSION IN THE PHI-4 LATTICE WITH COMPARISON TO THE CONTINUUM APPROXIMATION
    KUNZ, C
    COMBS, JA
    PHYSICAL REVIEW B, 1985, 31 (01): : 527 - 535
  • [15] Strings and stripes in ionic solids
    Kusmartsev, FV
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 18 (1-3): : 352 - 353
  • [16] Gravitational-wave background from kink-kink collisions on infinite cosmic strings
    Matsui, Yuka
    Kuroyanagi, Sachiko
    PHYSICAL REVIEW D, 2019, 100 (12)
  • [17] A simple solution strategy for coupled piezo-diffusion in elastic solids
    de Miranda, S.
    Garikipati, K.
    Molari, L.
    Ubertini, F.
    COMPUTATIONAL MECHANICS, 2009, 44 (02) : 191 - 203
  • [18] DIFFUSION OF SELF-EQUILIBRATING END LOADS IN ELASTIC SOLIDS.
    Durban, D.
    Stronge, W.J.
    Journal of Applied Mechanics, Transactions ASME, 1988, 55 (02): : 492 - 495
  • [19] Dynamic effects in nonlinearly coupled elastic deformation and diffusion fields in solids
    Spicer, J.B.
    Dikmelik, Y.
    Journal of Applied Physics, 2008, 104 (02):
  • [20] Dynamic effects in nonlinearly coupled elastic deformation and diffusion fields in solids
    Spicer, J. B.
    Dikmelik, Y.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)