Julia sets of random exponential maps

被引:0
|
作者
Lech, Krzysztof [1 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
complex dynamics; random dynamics; Julia set; exponential map; RANDOM ITERATIONS; CONNECTEDNESS; POLYNOMIALS;
D O I
10.4064/fm959-10-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded sequence omega = (lambda(n))(n=1)(infinity) of positive real numbers we consider the exponential functions f(lambda n) (z) = lambda(n)e(z) and the compositions F-omega(n) := f(lambda n) circle f lambda(n-1) circle...circle f(lambda 1). The definitions of Julia and Fatou sets are naturally generalized to this setting. We study how the Julia set depends on the sequence omega. Among other results, we prove that for the sequence lambda(n) = 1/e + 1/n(p) with p < 1/2, the Julia set is the whole plane.
引用
收藏
页码:159 / 180
页数:22
相关论文
共 50 条
  • [31] Intertwined internal rays in Julia sets of rational maps
    Devaney, Robert L.
    FUNDAMENTA MATHEMATICAE, 2009, 206 : 139 - 159
  • [32] Explosion Points and Topology of Julia Sets of Zorich Maps
    Athanasios Tsantaris
    Computational Methods and Function Theory, 2023, 23 : 663 - 688
  • [33] Explosion Points and Topology of Julia Sets of Zorich Maps
    Tsantaris, Athanasios
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2023, 23 (04) : 663 - 688
  • [34] Julia sets are quasicircles for rational maps of degree N
    Al-Salami, Hassanein Q.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (07) : 1421 - 1429
  • [35] LIMITING JULIA SETS FOR SINGULARLY PERTURBED RATIONAL MAPS
    Morabito, Mark
    Devaney, Robert L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (10): : 3175 - 3181
  • [36] Connectivity of the Julia sets of singularly perturbed rational maps
    Fu, Jianxun
    Zhang, Yanhua
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (03):
  • [37] Rational maps whose Julia sets are quasi circles
    Al-Salami, Hassanein Q.
    Al-shara, Iftichar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 2041 - 2048
  • [38] Sierpiński Curve Julia Sets of Rational Maps
    Norbert Steinmetz
    Computational Methods and Function Theory, 2006, 6 (2) : 317 - 327
  • [39] Rational maps with generalized Sierpinski gasket Julia sets
    Devaney, Robert L.
    Rocha, Monica Moreno
    Siegmund, Stefan
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (01) : 11 - 27
  • [40] Connectivity of Julia sets of Newton maps: a unified approach
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) : 1211 - 1228