Test of independence in the Farlie-Gumbel-Morgenstern distribution

被引:3
|
作者
Güven, B [1 ]
机构
[1] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
关键词
independence; quadrant dependence; Mellin transform; inversion integral; test function; likelihood ratio; approximated power;
D O I
10.1081/STA-120022707
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the hypotheses; H-0 : theta = 0 vs. H-1 : theta greater than or equal to eta where theta is the dependence parameter of the Farlie-Gumbel-Morgenstren distribution and eta is an element of (0, 1]. A test, which maximizes the minimum power over the alternative hypothesis, is given for these hypotheses. The power function of this test is monotone increasing over the alternative hypothesis. Furthermore, the asymptotic distribution and the approximate power of the test are presented.
引用
收藏
页码:1753 / 1765
页数:13
相关论文
共 50 条
  • [11] Aspects of Dependence in Generalized Farlie-Gumbel-Morgenstern Distributions
    Amini, M.
    Jabbari, H.
    Borzadaran, G. R. Mohtashami
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (08) : 1192 - 1205
  • [12] ON CONCOMITANTS OF BIVARIATE FARLIE-GUMBEL-MORGENSTERN DISTRIBUTIONS
    BuHamra, Sana
    Ahsanullah, M.
    PAKISTAN JOURNAL OF STATISTICS, 2013, 29 (04): : 453 - 466
  • [13] NOTE ON EXCHANGEABLE GENERALIZED FARLIE-GUMBEL-MORGENSTERN DISTRIBUTIONS
    SHAKED, M
    COMMUNICATIONS IN STATISTICS, 1975, 4 (08): : 711 - 721
  • [14] FARLIE-GUMBEL-MORGENSTERN BIVARIATE DENSITIES - ARE THEY APPLICABLE IN HYDROLOGY
    LONG, D
    KRZYSZTOFOWICZ, R
    STOCHASTIC HYDROLOGY AND HYDRAULICS, 1992, 6 (01): : 47 - 54
  • [15] CORRELATION STRUCTURE IN ITERATED FARLIE-GUMBEL-MORGENSTERN DISTRIBUTIONS
    HUANG, JS
    KOTZ, S
    BIOMETRIKA, 1984, 71 (03) : 633 - 636
  • [16] Discrete Weibull Variables Linked by Farlie-Gumbel-Morgenstern Copula
    Barbiero, Alessandro
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [17] Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb
    J. S. Huang
    Samuel Kotz
    Metrika, 1999, 49 : 135 - 145
  • [18] On bivariate ageing properties of exchangeable Farlie-Gumbel-Morgenstern distributions
    Yan, Rongfang
    You, Yinping
    Li, Xiaohu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11843 - 11853
  • [19] Reliability characteristics of Farlie-Gumbel-Morgenstern family of bivariate distributions
    Gupta, Ramesh C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (08) : 2342 - 2353
  • [20] Erland(2) Risk Model With a Farlie-Gumbel-Morgenstern Copula
    Jin Boyi
    Yan Qingyue
    Du Juan
    PROCEEDINGS OF THE 2015 CHINA INTERNATIONAL CONFERENCE ON INSURANCE AND RISK MANAGEMENT, 2015, : 609 - 622