The existence of bound states in a system of three particles in an optical lattice

被引:14
|
作者
Lakaev, Saidakhmat N. [1 ]
Lakaev, Shukhrat S. [2 ]
机构
[1] Samarkand State Univ, Samarkand, Uzbekistan
[2] Tashkent Inst Irrigat & Meliorat, 39 Kari Niyazov St, Tashkent 100000, Uzbekistan
关键词
Schroedinger operator; three-particle; Hamiltonian; zero-range; fermion; lattice; eigenvalue;
D O I
10.1088/1751-8121/aa7db8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the hamiltonian H mu, mu is an element of R of a system of three-particles ( two identical fermions and one different particle) moving on the lattice Z(d), d = 1, 2 interacting through repulsive (mu > 0) or attractive (mu < 0) zero-range pairwise potential mu nu. We prove for any mu not equal 0 the existence of bound states of the discrete three-particle Schrodinger operator H-mu( K), K is an element of T-d being the three-particle quasi-momentum, associated to the hamiltonian H-mu.
引用
收藏
页数:17
相关论文
共 50 条