PCA AND KPCA OF ECG SIGNALS WITH BINARY SVM CLASSIFICATION

被引:0
|
作者
Kanaan, L. [1 ]
Merheb, D. [1 ]
Kallas, M. [2 ,3 ]
Francis, C. [2 ]
Amoud, H. [2 ]
Honeine, P. [3 ]
机构
[1] Univ St Esprit Kaslik, Jounieh, Lebanon
[2] Lebanese Univ, Fac Engn, Jounieh, Lebanon
[3] Univ Technol Troyes, Inst Charles Delaunay CNRS, F-10010 Troyes, France
关键词
ECG signals; PCA; Kernel PCA; SVM classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cardiac problems are the main reason of people's death nowadays. However, one way that light save the life is the analysis of the an electrocardiograph. This analysis consist in the diagnosis of the arrhythmia when it presents. In this paper, we propose to combine the Support Vector Machines used in classification on one hand, with the Principal Component Analysis used in order to reduce the size of the data by choosing some axes that capture the most variance between data and on the other hand, with the kernel principal component analysis where a mapping to a high dimensional space is needed to capture the most relevant axes but for nonlinear separable data. The efficiency of the proposed SVM classification is illustrated on real electrocardiogram dataset taken from MIT-BIH Arrhythmia Database.
引用
收藏
页码:344 / 348
页数:5
相关论文
共 50 条
  • [31] Classification of EMG signals using PCA and FFT
    Güler N.F.
    Koçer S.
    [J]. Journal of Medical Systems, 2005, 29 (3) : 241 - 250
  • [32] A Survey of ECG Classification for Arrhythmia Diagnoses Using SVM
    Ayushi, Doshi
    Nikita, Bhatt
    Nitin, Shah
    [J]. INTELLIGENT COMMUNICATION TECHNOLOGIES AND VIRTUAL MOBILE NETWORKS, ICICV 2019, 2020, 33 : 574 - 590
  • [33] Automatic classification of weld defects from ultrasonic signals using WPEE-KPCA feature extraction and an ABC-SVM approach
    Chen, Yuan
    Liang, Shaonan
    Wang, Zhongyang
    Ma, Hongwei
    Dong, Ming
    Liu, Dengxue
    Wan, Xiang
    [J]. INSIGHT, 2023, 65 (05) : 262 - 269
  • [34] 基于PCA-2KPCA-SVM的pod入侵高精度检测方法
    黄可望
    蔡一新
    朱嘉钢
    [J]. 计算机工程与设计, 2017, 38 (08) : 2092 - 2098
  • [35] Boosted-PCA for Binary Classification Problems
    Lok, Seaung Ham
    Kwak, Nojun
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012, : 1219 - 1222
  • [36] Text Document Classification with PCA and One-Class SVM
    Kumar, B. Shravan
    Ravi, Vadlamani
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, FICTA 2016, VOL 1, 2017, 515 : 107 - 115
  • [37] Classification of lunar soil from reflectance spectrum by PCA and SVM
    Zhang, Xiaoyu
    Huang, Maohai
    Chu, Jun
    Li, Chunlai
    [J]. MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [38] Classification of direction perception EEG based on PCA-SVM
    Jin, Jing
    Wang, Xingyu
    Wang, Bei
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2007, : 116 - +
  • [39] Brain fMRI Processing and Classification Based on Combination of PCA and SVM
    Xie, Song-yun
    Guo, Rong
    Li, Ning-fei
    Wang, Ge
    Zhao, Hai-tao
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 3510 - +
  • [40] Classification of audio signals using SVM and RBFNN
    Dhanalakshmi, P.
    Palanivel, S.
    Ramalingam, V.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6069 - 6075