Sensitivity Analysis for Deep Learning: Ranking Hyper-parameter Influence

被引:20
|
作者
Taylor, Rhian [1 ]
Ojha, Varun [1 ]
Martino, Ivan [2 ]
Nicosia, Giuseppe [3 ]
机构
[1] Univ Reading, Dept Comp Sci, Reading, Berks, England
[2] KTH Royal Inst Technol, Stockholm, Sweden
[3] Univ Cambridge, Cambridge, England
关键词
Sensitivity Analysis; Deep Learning; Hyper-parameter Tuning; Hyper-parameter rank; Hyper-parameter Influence; NEURAL-NETWORKS; UNCERTAINTY;
D O I
10.1109/ICTAI52525.2021.00083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel approach to rank Deep Learning (DL) hyper-parameters through the application of Sensitivity Analysis (SA). DL hyper-parameter tuning is crucial to model accuracy however, choosing optimal values for each parameter is time and resource-intensive. SA provides a quantitative measure by which hyper-parameters can be ranked in terms of contribution to model accuracy. Learning rate decay was ranked highest, with model performance being sensitive to this parameter regardless of architecture or dataset. The influence of a model's initial learning rate was proven to be low, contrary to the literature. Additionally, the importance of a parameter is closely linked to model architecture. Shallower models showed susceptibility to hyper-parameters affecting the stochasticity of the learning process whereas deeper models showed sensitivity to hyper-parameters affecting the convergence speed. Furthermore, the complexity of the dataset can affect the margin of separation between the sensitivity measures of the most and the least influential parameters, making the most influential hyper-parameter an ideal candidate for tuning compared to the other parameters.
引用
收藏
页码:512 / 516
页数:5
相关论文
共 50 条
  • [21] KGTuner: Efficient Hyper-parameter Search for Knowledge Graph Learning
    Zhang, Yongqi
    Zhou, Zhanke
    Yao, Quanming
    Li, Yong
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2715 - 2735
  • [22] Learning an Explicit Hyper-parameter Prediction Function Conditioned on Tasks
    Shu, Jun
    Meng, Deyu
    Xu, Zongben
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [23] Beamer: Stage-Aware Coflow Scheduling to Accelerate Hyper-Parameter Tuning in Deep Learning Clusters
    He, Yihong
    Cai, Weibo
    Zhou, Pan
    Sun, Gang
    Luo, Shouxi
    Yu, Hongfang
    Guizani, Mohsen
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (02): : 1083 - 1097
  • [24] Particle Swarm Optimization for Hyper-Parameter Selection in Deep Neural Networks
    Lorenzo, Pablo Ribalta
    Nalepa, Jakub
    Kawulok, Michal
    Sanchez Ramos, Luciano
    Ranilla Pastor, Jose
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 481 - 488
  • [25] OPTIMAL HYPER-PARAMETER TUNING USING CUSTOM GENETIC ALGORITHM ON DEEP LEARNING TO DETECT TWITTER BOTS
    Thavasimani, Karthikayini
    Srinath, N. K.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2022, 17 (02): : 1532 - 1549
  • [26] Random search for hyper-parameter optimization
    Département D'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, QC, H3C 3J7, Canada
    J. Mach. Learn. Res., (281-305):
  • [27] Random Search for Hyper-Parameter Optimization
    Bergstra, James
    Bengio, Yoshua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 281 - 305
  • [28] Hyper-parameter Recommendation for Truth Discovery
    Chen, Siying
    Ding, Xiaoou
    Liang, Zheng
    Tang, Yafeng
    Wang, Hongzhi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 3, 2025, 14852 : 277 - 292
  • [29] Hyper-parameter Optimization for Latent Spaces
    Veloso, Bruno
    Caroprese, Luciano
    Konig, Matthias
    Teixeira, Sonia
    Manco, Giuseppe
    Hoos, Holger H.
    Gama, Joao
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 249 - 264
  • [30] Hyper-parameter optimization of gradient boosters for flood susceptibility analysis
    Lai, Tuan Anh
    Nguyen, Ngoc-Thach
    Bui, Quang-Thanh
    TRANSACTIONS IN GIS, 2023, 27 (01) : 224 - 238