A Riemann-Hilbert boundary value problem in a triangle

被引:3
|
作者
Akel, M. [1 ,2 ]
Alabbad, F. [1 ]
机构
[1] KFU, Coll Sci, Dept Math, Al Ahsaa 31982, Saudi Arabia
[2] South Valley Univ, Fac Sci, Dept Math, Qena 83523, Egypt
关键词
Riemann-Hilbert problem; Cauchy-Riemann equation; Pompeiu-type integral; Schwarz-type integral; Boundary value problems; DIRICHLET PROBLEM; GREEN-FUNCTIONS; EQUATION;
D O I
10.1016/j.jmaa.2014.11.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article a Riemann-Hilbert boundary value problem on an isosceles orthogonal triangle is considered. Using explicit Schwarz-Poisson-type formulae for the triangle, Schwarz-type and Pompeiu-type operators are obtained. Boundary behaviors of these operators are discussed in detail. Finally, we investigate the Riemann-Hilbert boundary value problem for both homogeneous and inhomogeneous Cauchy-Riemann equations. An explicit solvability of the problem is obtained. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:523 / 536
页数:14
相关论文
共 50 条
  • [41] THE RIEMANN-HILBERT PROBLEM FOR HOLONOMIC SYSTEMS
    KASHIWARA, M
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) : 319 - 365
  • [42] Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces
    Cerne, M
    AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (01) : 65 - 87
  • [43] On the Riemann-Hilbert Problem for the Beltrami Equations
    Yefimushkin, Artyem
    Ryazanov, Vladimir
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS, 2016, 667 : 299 - 316
  • [44] On the Riemann-Hilbert problem of the Kundu equation
    Hu, Beibei
    Zhang, Ling
    Xia, Tiecheng
    Zhang, Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 381
  • [45] A SPECIAL CASE OF THE RIEMANN-HILBERT PROBLEM
    BOYARSKY, BV
    DOKLADY AKADEMII NAUK SSSR, 1958, 119 (03): : 411 - 414
  • [46] The Riemann-Hilbert problem in loop spaces
    G. Giorgadze
    G. Khimshiashvili
    Doklady Mathematics, 2006, 73 : 258 - 260
  • [47] The Riemann-Hilbert problem on the Mobius strip
    Bolosteanu, Carmen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (1-3) : 115 - 125
  • [48] RIEMANN-HILBERT PROBLEM, INTEGRABILITY AND REDUCTIONS
    Gerdjikov, Vladimir S.
    Ivanov, Rossen I.
    Stefanov, Aleksander A.
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02): : 167 - 185
  • [49] Numerical Solution of the Riemann-Hilbert Problem
    Nasser, Mohamed M. S.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2008, 40 : 9 - 29
  • [50] The Riemann-Hilbert problem in loop spaces
    Giorgadze, G.
    Khimshiashvili, G.
    DOKLADY MATHEMATICS, 2006, 73 (02) : 258 - 260