MULTIMODAL NANOSTRUCTURED TITANIUM USING SEVERE PLASTIC DEFORMATION

被引:0
|
作者
Wen, C. [1 ]
Yang, D. K. [2 ]
Li, Y. C. [2 ]
Hodgson, P. D. [2 ]
机构
[1] Swinburne Univ Technol, Fac Engn & Ind Sci, IRIS, Hawthorn, Vic 3122, Australia
[2] Deakin Univ, Geelong, Vic 3217, Australia
关键词
mechanical properties; titanium; multimodal microstructure; severe plastic deformation; NANOCRYSTALLINE MATERIALS; ULTRAHIGH-STRENGTH; RATE SENSITIVITY; HIGH DUCTILITY; METALS; COPPER; MECHANISM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present study, multimodal nanostructured titanium was engineered using severe plastic deformation. The multimodal structured titanium exhibits an ultrahigh strength of over 940 MPa and a large failure elongation of 24%. The ultrahigh strength is mainly derived from the nanostructured structures; whilst the exceptional ductility originates from the large fraction of high angle grain boundaries, micro-scale structures, and the non-equilibrium grain boundary configuration. It is worth noting that apart from dislocation slip processes, the formation of deformation twins reduced the effective slip distance and increased the strain hardening capacity via the Hall-Petch mechanism; leading to high ductility of the multimodal structured titanium.
引用
收藏
页码:623 / +
页数:3
相关论文
共 50 条
  • [41] Influence of severe plastic deformation on thermal oxidation of titanium alloys
    Yang H.
    Zhuang W.
    Wang Y.
    Yan W.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (09):
  • [42] Effect of severe plastic deformation on the structure of polycrystalline titanium monoxide
    Valeeva, AA
    Gizhevskii, BA
    Pilyugin, VP
    Rempel, AA
    PHYSICS OF METALS AND METALLOGRAPHY, 2005, 99 (01): : 56 - 61
  • [43] Dislocation evolution in titanium during surface severe plastic deformation
    Wen, Ming
    Liu, Gang
    Gu, Jian-feng
    Guan, Wei-ming
    Lu, Jian
    APPLIED SURFACE SCIENCE, 2009, 255 (12) : 6097 - 6102
  • [44] Structure and density of submicrocrystalline titanium produced by severe plastic deformation
    Salishchev, GA
    Galeyev, RM
    Malysheva, SP
    Myshlyaev, MM
    NANOSTRUCTURED MATERIALS, 1999, 11 (03): : 407 - 414
  • [45] Recycling of titanium machining chips by severe plastic deformation consolidation
    Luo, P.
    Xie, H.
    Paladugu, M.
    Palanisamy, S.
    Dargusch, M. S.
    Xia, K.
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (17) : 4606 - 4612
  • [46] Development of severe plastic deformation techniques for the fabrication of bulk nanostructured materials
    Valiev, RZ
    Alexandrov, IV
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2002, 27 (03): : 3 - 14
  • [47] Superplasticity of nanostructured metallic materials obtained by methods of severe plastic deformation
    R. Z. Valiev
    R. K. Islamgaliev
    N. F. Yunusova
    Metal Science and Heat Treatment, 2006, 48 : 47 - 53
  • [48] Nanostructured phase boundaries in aluminum under severe cyclic plastic deformation
    Panin, V. E.
    Surikova, N. S.
    Elsukova, T. F.
    Egorushkin, V. E.
    Pochivalov, Yu. I.
    PHYSICAL MESOMECHANICS, 2010, 13 (3-4) : 103 - 112
  • [49] Statistical characterization of nanostructured materials from severe plastic deformation in machining
    Perry, Marcus B.
    Kharoufeh, Jeffrey P.
    Shekhar, Shashank
    Cai, Jiazhao
    Shankar, M. Ravi
    IIE TRANSACTIONS, 2012, 44 (07) : 534 - 550
  • [50] Structure and creep behavior of nanostructured materials produced by severe plastic deformation
    Grabovetskaya, GP
    Kolobov, YR
    Ivanov, KV
    Girsova, NV
    PHYSICS OF METALS AND METALLOGRAPHY, 2002, 94 : S37 - S44